86 research outputs found

    From qubits to black holes: entropy, entanglement and all that

    Full text link
    Entropy plays a crucial role in characterization of information and entanglement, but it is not a scalar quantity and for many systems it is different for different relativistic observers. Loop quantum gravity predicts the Bekenstein-Hawking term for black hole entropy and logarithmic correction to it. The latter originates in the entanglement between the pieces of spin networks that describe black hole horizon. Entanglement between gravity and matter may restore the unitarity in the black hole evaporation process. If the collapsing matter is assumed to be initially in a pure state, then entropy of the Hawking radiation is exactly the created entanglement between matter and gravity.Comment: Honorable Mention in the 2005 Gravity Research Foundation Essay Competitio

    Ground state entanglement and geometric entropy in the Kitaev's model

    Full text link
    We study the entanglement properties of the ground state in Kitaev's model. This is a two-dimensional spin system with a torus topology and nontrivial four-body interactions between its spins. For a generic partition (A,B)(A,B) of the lattice we calculate analytically the von Neumann entropy of the reduced density matrix ρA\rho_A in the ground state. We prove that the geometric entropy associated with a region AA is linear in the length of its boundary. Moreover, we argue that entanglement can probe the topology of the system and reveal topological order. Finally, no partition has zero entanglement and we find the partition that maximizes the entanglement in the given ground state.Comment: 4 pages, one fig, ReVTeX 4; updated to the published versio

    Statistical Origin of Black Hole Entropy in Matrix Theory

    Full text link
    The statistical entropy of black holes in M-theory is considered. Assuming Matrix theory is the discretized light-cone quantization of a theory with eleven-dimensional Lorentz invariance, we map the counting problem onto the original Gibbons-Hawking calculation of the thermodynamic entropy.Comment: 9 pages, harvmac, (v2 References added, typo fixed), (v3 Some clarifying comments added.

    Soliton Induced Singularities in 2 d Gravity and their Evaporation

    Get PDF
    Positive energy singularities induced by Sine-Gordon solitons in 1+1 dimensional dilaton gravity with positive and negative cosmological constant are considered. When the cosmological constant is positive, the singularities combine a white hole, a timelike singularity and a black hole joined smoothly near the soliton center. When the cosmological constant is negative, the solutions describe two timelike singularities joined smoothly near the soliton center. We describe these spacetimes and examine their evaporation in the one loop approximation.Comment: 15 pages (37.7 kb), PHYZZX. Figures available from authors

    Entropy in the RST Model

    Full text link
    The RST Model is given boundary term and Z-field so that it is well-posed and local. The Euclidean method is described for general theory and used to calculate the RST intrinsic entropy. The evolution of this entropy for the shockwave solutions is found and obeys a second law.Comment: 10 pages, minor revisions, published version in Late

    A Proof of the Generalized Second Law for Two-Dimensional Black Holes

    Get PDF
    We investigate the generalized second law for two-dimensional black holes in equilibrium (Hartle-Hawking) and nonequilibrium (Unruh) with the heat bath surrounding the black holes. We obtain a simple expression for the change of total entropy in terms of covariant thermodynamic variables, which is valid not only for the Hartle-Hawking state but also for the Unruh state up to leading order, without assuming a quasi-stationary evolution of the black holes. Using this expression, it is shown that the rate of local entropy production is non-negative in the two-dimensional black hole systems.Comment: 15 pages, boundary condition of static black hole is added to clarify the situation, abstract and section 4 (concluding remarks) is rewritten, and minor corrections, references adde

    Unruh Radiation, Holography and Boundary Cosmology

    Get PDF
    A uniformly acclerated observer in anti-deSitter space-time is known to detect thermal radiation when the acceleration exceeds a critical value. We investigate the holographic interpretation of this phenomenon. For uniformly accelerated trajectories transverse to the boundary of the AdS space, the hologram is a blob which expands along the boundary. Observers on the boundary co-moving with the hologram become observers in cosmological space-times. For supercritical accelerations one gets a Milne universe when the holographic screen is the boundary in Poincare coordinates, while for the boundary in hyperspherical coordinates one gets deSitter spacetimes. The presence or absence of thermality is then interpreted in terms of specific classes of observers in these cosmologies.Comment: LaTeX, 35 pages, 3 figures. A reference is added and typos are correcte

    Hawking Radiation and Unitary evolution

    Get PDF
    We find a family of exact solutions to the semi-classical equations (including back-reaction) of two-dimensional dilaton gravity, describing infalling null matter that becomes outgoing and returns to infinity without forming a black hole. When a black hole almost forms, the radiation reaching infinity in advance of the original outgoing null matter has the properties of Hawking radiation. The radiation reaching infinity after the null matter consists of a brief burst of negative energy that preserves unitarity and transfers information faster than the theoretical bound for positive energy.Comment: LaTex file + uuencoded ps version including 4 figure

    Degrees of freedom in two dimensional string theory

    Get PDF
    We discuss two issues regarding the question of degrees of freedom in two dimensional string theory. The first issue relates to the classical limit of quantum string theory. In the classical theory one requires an infinite number of fields in addition to the collective field to describe ``folds'' on the fermi surface. We argue that in the quantum theory these are not additional degrees of freedom. Rather they represent quantum dispersions of the collective field which are {\em not} suppressed when 0\hbar \rightarrow 0 whenever a fold is present, thus leading to a nontrivial classical limit. The second issue relates to the ultraviolet properties of the geometric entropy. We argue that the geometric entropy is finite in the ultraviolet due to {\em nonperturbative} effects. This indicates that the true degrees of freedom of the two dimensional string at high energies is much smaller than what one naively expects. (Based on talks at Spring Workshop on String theory and Quantum Gravity, ICTP, Trieste, March 1995 and VIIth Regional Conference on Mathematical Physics, Bandar-Anzali, October 1995.)Comment: 18 pages, LaTe

    Does the generalized second law hold in the form of time derivative expression?

    Get PDF
    We investigate whether the generalized second law is valid, using two dimensional black hole spacetime, irrespective of models. A time derivative form of the generalized second law is formulated and it is shown that the law might become invalid. The way to resolve this difficulty is also presented and discussed.Comment: 12 pages, 3 figures, revte
    corecore