326 research outputs found

    Purification and partial characterization of prostate-derived growth factor.

    Full text link

    Illness tracking in SARS-CoV-2 tested persons using a smartphone app: a non-interventional, prospective, cohort study

    Full text link
    There are few data on the range and severity of symptoms of SARS-CoV-2 infection or the impact on life quality in infected, previously healthy, young adults such as Swiss Armed Forces personnel. It is also unclear if an app can be used to remotely monitor symptoms in persons who test positive. Using a smartphone app called ITITP (Illness Tracking in Tested Persons) and weekly pop-up questionnaires, we aimed to evaluate the spectrum, duration, and impact of symptoms reported after a positive SARS-CoV-2 test according to sex, age, location, and comorbidities, and to compare these to responses from persons who tested negative. We followed up 502 participants (57% active participation), including 68 (13.5%) positive tested persons. Hospitalisation was reported by 6% of the positive tested participants. We found that positives reported significantly more symptoms that are typical of COVID-19 compared to negatives. These symptoms with odds ratio (OR > 1) were having difficulty breathing (OR 3.35; 95% CI: 1.16, 9.65; p = 0.03), having a reduced sense of taste (OR 5.45; 95% CI: 1.22, 24.34; p = 0.03) and a reduced sense of smell (OR 18.24; 95% CI: 4.23, 78.69; p < 0.001). Using a random forest model, we showed that tiredness was the single symptom that was rated as having a significant impact on daily activities, whereas the other symptoms, although frequent, had less impact. The study showed that the use of an app was feasible to remotely monitor symptoms in persons infected with SARS-CoV-2 and could be adapted for other settings and new pandemic phases such as the current Omicron wave

    Platelet factor-4 and its p17-70 peptide inhibit myeloma proliferation and angiogenesis in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Angiogenesis plays an important role in the development of multiple myeloma (MM). The interaction between MM cells and the bone marrow microenvironment stimulates the proliferation and migration of endothelial progenitor cells (EPCs). Vascular endothelial growth factor (VEGF) contributes to the formation of new blood vessels by actively recruiting circulating EPCs. The production of proangiogenic and antiangiogenic factors is also dysregulated in MM. Platelet factor 4 (PF4) is a potent angiostatic cytokine that inhibits angiogenesis and tumor growth in several animal models.</p> <p>Methods</p> <p>In this study, we stably transfected human myeloma cell lines with the PF4 gene or the sequence encoding its more potent p17-70 peptide and investigated the effects of PF4 and p17-70 on angiogenesis and tumor growth <it>in vitro </it>and in a SCID-rab myeloma model.</p> <p>Results</p> <p>PF4 and p17-70 significantly attenuated VEGF production, both <it>in vitro </it>and <it>in vivo</it>. In a migration study using a Transwell system, PF4 or p17-70 markedly suppressed the migration of co-cultured human endothelial progenitor cells. PF4 or p17-70 also caused a significant reduction in microvessel densities in myeloma xenografts and markedly reduced the tumor volume in the SCID mice. Kaplan-Meier analysis demonstrated that PF4 and p17-70 significantly extended the overall survival of SCID mice bearing human myeloma xenografts.</p> <p>Conclusions</p> <p>Our findings indicate that PF4 or p17-70 could be valuable in combating multiple myeloma by disrupting tumor angiogenesis.</p

    Role of cytoskeletal abnormalities in the neuropathology and pathophysiology of type I lissencephaly

    Get PDF
    Type I lissencephaly or agyria-pachygyria is a rare developmental disorder which results from a defect of neuronal migration. It is characterized by the absence of gyri and a thickening of the cerebral cortex and can be associated with other brain and visceral anomalies. Since the discovery of the first genetic cause (deletion of chromosome 17p13.3), six additional genes have been found to be responsible for agyria–pachygyria. In this review, we summarize the current knowledge concerning these genetic disorders including clinical, neuropathological and molecular results. Genetic alterations of LIS1, DCX, ARX, TUBA1A, VLDLR, RELN and more recently WDR62 genes cause migrational abnormalities along with more complex and subtle anomalies affecting cell proliferation and differentiation, i.e., neurite outgrowth, axonal pathfinding, axonal transport, connectivity and even myelination. The number and heterogeneity of clinical, neuropathological and radiological defects suggest that type I lissencephaly now includes several forms of cerebral malformations. In vitro experiments and mutant animal studies, along with neuropathological abnormalities in humans are of invaluable interest for the understanding of pathophysiological mechanisms, highlighting the central role of cytoskeletal dynamics required for a proper achievement of cell proliferation, neuronal migration and differentiation

    DNA repair, genome stability and cancer: a historical perspective

    Get PDF
    The multistep process of cancer progresses over many years. The prevention of mutations by DNA repair pathways led to an early appreciation of a role for repair in cancer avoidance. However, the broader role of the DNA damage response (DDR) emerged more slowly. In this Timeline article, we reflect on how our understanding of the steps leading to cancer developed, focusing on the role of the DDR. We also consider how our current knowledge can be exploited for cancer therapy

    Autocrine PDGF stimulation in malignancies

    Get PDF
    Platelet-derived growth factor (PDGF) isoforms are important mitogens for different types of mesenchymal cells, which have important functions during the embryonal development and in the adult during wound healing and tissue homeostasis. In tumors, PDGF isoforms are often over-expressed and contribute to the growth of both normal and malignant cells. This review focuses on tumors expressing PDGF isoforms together with their tyrosine kinase receptors, thus resulting in autocrine stimulation of growth and survival. Patients with such tumors could benefit from treatment with inhibitors of either PDGF or PDGF receptors

    Transcriptional Responses of Cultured Rat Sympathetic Neurons during BMP-7-Induced Dendritic Growth

    Get PDF
    Dendrites are the primary site of synapse formation in the vertebrate nervous system; however, relatively little is known about the molecular mechanisms that regulate the initial formation of primary dendrites. Embryonic rat sympathetic neurons cultured under defined conditions extend a single functional axon, but fail to form dendrites. Addition of bone morphogenetic proteins (BMPs) triggers these neurons to extend multiple dendrites without altering axonal growth or cell survival. We used this culture system to examine differential gene expression patterns in naïve vs. BMP-treated sympathetic neurons in order to identify candidate genes involved in regulation of primary dendritogenesis.To determine the critical transcriptional window during BMP-induced dendritic growth, morphometric analysis of microtubule-associated protein (MAP-2)-immunopositive processes was used to quantify dendritic growth in cultures exposed to the transcription inhibitor actinomycin-D added at varying times after addition of BMP-7. BMP-7-induced dendritic growth was blocked when transcription was inhibited within the first 24 hr after adding exogenous BMP-7. Thus, total RNA was isolated from sympathetic neurons exposed to three different experimental conditions: (1) no BMP-7 treatment; (2) treatment with BMP-7 for 6 hr; and (3) treatment with BMP-7 for 24 hr. Affymetrix oligonucleotide microarrays were used to identify differential gene expression under these three culture conditions. BMP-7 significantly regulated 56 unique genes at 6 hr and 185 unique genes at 24 hr. Bioinformatic analyses implicate both established and novel genes and signaling pathways in primary dendritogenesis.This study provides a unique dataset that will be useful in generating testable hypotheses regarding transcriptional control of the initial stages of dendritic growth. Since BMPs selectively promote dendritic growth in central neurons as well, these findings may be generally applicable to dendritic growth in other neuronal cell types
    corecore