2,774 research outputs found

    Green Function Monte Carlo with Stochastic Reconfiguration

    Full text link
    A new method for the stabilization of the sign problem in the Green Function Monte Carlo technique is proposed. The method is devised for real lattice Hamiltonians and is based on an iterative ''stochastic reconfiguration'' scheme which introduces some bias but allows a stable simulation with constant sign. The systematic reduction of this bias is in principle possible. The method is applied to the frustrated J1-J2 Heisenberg model, and tested against exact diagonalization data. Evidence of a finite spin gap for J2/J1 >~ 0.4 is found in the thermodynamic limit.Comment: 13 pages, RevTeX + 3 encapsulated postscript figure

    Quantum simulations of the superfluid-insulator transition for two-dimensional, disordered, hard-core bosons

    Full text link
    We introduce two novel quantum Monte Carlo methods and employ them to study the superfluid-insulator transition in a two-dimensional system of hard-core bosons. One of the methods is appropriate for zero temperature and is based upon Green's function Monte Carlo; the other is a finite-temperature world-line cluster algorithm. In each case we find that the dynamical exponent is consistent with the theoretical prediction of z=2z=2 by Fisher and co-workers.Comment: Revtex, 10 pages, 3 figures (postscript files attached at end, separated by %%%%%% Fig # %%%%%, where # is 1-3). LA-UR-94-270

    Anisotropic two-dimensional Heisenberg model by Schwinger-boson Gutzwiller projected method

    Full text link
    Two-dimensional Heisenberg model with anisotropic couplings in the xx and yy directions (Jx≠JyJ_x \neq J_y) is considered. The model is first solved in the Schwinger-boson mean-field approximation. Then the solution is Gutzwiller projected to satisfy the local constraint that there is only one boson at each site. The energy and spin-spin correlation of the obtained wavefunction are calculated for systems with up to 20×2020 \times 20 sites by means of the variational Monte Carlo simulation. It is shown that the antiferromagnetic long-range order remains down to the one-dimensional limit.Comment: 15 pages RevTex3.0, 4 figures, available upon request, GWRVB8-9

    Two-dimensional Superfluidity and Localization in the Hard-Core Boson Model: a Quantum Monte Carlo Study

    Full text link
    Quantum Monte Carlo simulations are used to investigate the two-dimensional superfluid properties of the hard-core boson model, which show a strong dependence on particle density and disorder. We obtain further evidence that a half-filled clean system becomes superfluid via a finite temperature Kosterlitz-Thouless transition. The relationship between low temperature superfluid density and particle density is symmetric and appears parabolic about the half filling point. Disorder appears to break the superfluid phase up into two distinct localized states, depending on the particle density. We find that these results strongly correlate with the results of several experiments on high-TcT_c superconductors.Comment: 10 pages, 3 figures upon request, RevTeX version 3, (accepted for Phys. Rev. B

    Evaluation of different deployment strategies for larviciding to control malaria: a simulation study

    Get PDF
    BACKGROUND: Larviciding against malaria vectors in Africa has been limited to indoor residual spraying and insecticide-treated nets, but is increasingly being considered by some countries as a complementary strategy. However, despite progress towards improved larvicides and new tools for mapping or treating mosquito-breeding sites, little is known about the optimal deployment strategies for larviciding in different transmission and seasonality settings. METHODS: A malaria transmission model, OpenMalaria, was used to simulate varying larviciding strategies and their impact on host-seeking mosquito densities, entomological inoculation rate (EIR) and malaria prevalence. Variations in coverage, duration, frequency, and timing of larviciding were simulated for three transmission intensities and four transmission seasonality profiles. Malaria transmission was assumed to follow rainfall with a lag of one month. Theoretical sub-Saharan African settings with Anopheles gambiae as the dominant vector were chosen to explore impact. Relative reduction compared to no larviciding was predicted for each indicator during the simulated larviciding period. RESULTS: Larviciding immediately reduced the predicted host-seeking mosquito densities and EIRs to a maximum that approached or exceeded the simulated coverage. Reduction in prevalence was delayed by approximately one month. The relative reduction in prevalence was up to four times higher at low than high transmission. Reducing larviciding frequency (i.e., from every 5 to 10 days) resulted in substantial loss in effectiveness (54, 45 and 53% loss of impact for host-seeking mosquito densities, EIR and prevalence, respectively). In seasonal settings the most effective timing of larviciding was during or at the beginning of the rainy season and least impactful during the dry season, assuming larviciding deployment for four months. CONCLUSION: The results highlight the critical role of deployment strategies on the impact of larviciding. Overall, larviciding would be more effective in settings with low and seasonal transmission, and at the beginning and during the peak densities of the target species populations. For maximum impact, implementers should consider the practical ranges of coverage, duration, frequency, and timing of larviciding in their respective contexts. More operational data and improved calibration would enable models to become a practical tool to support malaria control programmes in developing larviciding strategies that account for the diversity of contexts

    Exact-exchange density-functional calculations for noble-gas solids

    Full text link
    The electronic structure of noble-gas solids is calculated within density functional theory's exact-exchange method (EXX) and compared with the results from the local-density approximation (LDA). It is shown that the EXX method does not reproduce the fundamental energy gaps as well as has been reported for semiconductors. However, the EXX-Kohn-Sham energy gaps for these materials reproduce about 80 % of the experimental optical gaps. The structural properties of noble-gas solids are described by the EXX method as poorly as by the LDA one. This is due to missing Van der Waals interactions in both, LDA and EXX functionals.Comment: 4 Fig

    The Debye-Waller Factor in solid 3He and 4He

    Full text link
    The Debye-Waller factor and the mean-squared displacement from lattice sites for solid 3He and 4He were calculated with Path Integral Monte Carlo at temperatures between 5 K and 35 K, and densities between 38 nm^(-3) and 67 nm^(-3). It was found that the mean-squared displacement exhibits finite-size scaling consistent with a crossover between the quantum and classical limits of N^(-2/3) and N^(-1/3), respectively. The temperature dependence appears to be T^3, different than expected from harmonic theory. An anisotropic k^4 term was also observed in the Debye-Waller factor, indicating the presence of non-Gaussian corrections to the density distribution around lattice sites. Our results, extrapolated to the thermodynamic limit, agree well with recent values from scattering experiments.Comment: 5 figure

    The Low-Energy Fixed Points of Random Quantum Spin Chains

    Full text link
    The one-dimensional isotropic quantum Heisenberg spin systems with random couplings and random spin sizes are investigated using a real-space renormalization group scheme. It is demonstrated that these systems belong to a universality class of disordered spin systems, characterized by weakly coupled large effective spins. In this large-spin phase the uniform magnetic susceptibility diverges as 1/T with a non-universal Curie constant at low temperatures T, while the specific heat vanishes as T^delta |ln T| for T->0. For broad range of initial distributions of couplings and spin sizes the distribution functions approach a single fixed-point form, where delta \approx 0.44. For some singular initial distributions, however, fixed-point distributions have non-universal values of delta, suggesting that there is a line of fixed points.Comment: 19 pages, REVTeX, 13 figure
    • …
    corecore