80 research outputs found

    Bis({tris[2-(3,5-di-tert-butyl-2-oxido­benzylideneamino)ethyl]amine}cerium(III)) diethyl ether solvate

    Get PDF
    The title compound, 2[Ce(C51H75N4O3)]·C4H10O, was obtained in high yield (92%) by reduction of (TRENDSAL)CeIVCl [TRENDSAL is N,N′,N′′-tris­(3,5-di-tert-butyl­salicyl­ide­natoamino)­triethyl­amine] with potassium in THF. The bulky tripodal TRENDSAL ligand effectively encapsulates the central CeIII cation with a Ce—N(imine) distance of 2.860 (2) Å and an average C—N(amine) distance of 2.619 Å within a distorted monocapped octahedral coordination

    Depinning of a vortex chain in a disordered flow channel

    Full text link
    We study depinning of vortex chains in channels formed by static, disordered vortex arrays. Depinning is governed either by the barrier for defect nucleation or for defect motion, depending on whether the chain periodicity is commensurate or incommensurate with the surrounding arrays. We analyze the reduction of the gap between these barriers as function of disorder. At large disorder, commensurability becomes irrelevant and the pinning force is reduced to a small fraction of the ideal shear strength of ordered channels. Implications for experiments on channel devices are discussed.Comment: 5 pages, 4 figures. Accepted for publication in Europhysics Letter

    Tris(N,N′-diisopropyl­benzamidinato)cerium(III)

    Get PDF
    The title compound, [Ce(C13H19N2)3], was obtained in moderate yield (67%) by treatment of anhydrous cerium trichloride with three equivalents of Li[PhC(NiPr)2] in tetra­hydro­furan. It is the first homoleptic lanthanide complex of this amidinate ligand. The central CeIII ion is coordinated by three chelating benzamidinate anions in a distorted octa­hedral fashion, with Ce—N distances in the narrow range 2.482 (2)–2.492 (2) Å. The dihedral angles between the phenyl rings and the chelating N—C—N units are in the range 73.3–87.9°, thus preventing conjugation between the two π-systems. The mol­ecule is located on a twofold rotation axis, and one of the phenyl rings is equally disordered over two alternative symmetry-equivalent positions around this axis

    Metastability in Josephson transmission lines

    Full text link
    Thermal activation and macroscopic quantum tunneling in current-biased discrete Josephson transmission lines are studied theoretically. The degrees of freedom under consideration are the phases across the junctions which are coupled to each other via the inductances of the system. The resistively shunted junctions that we investigate constitute a system of N interacting degrees of freedom with an overdamped dynamics. We calculate the decay rate within exponential accuracy as a function of temperature and current. Slightly below the critical current, the decay from the metastable state occurs via a unique ("rigid") saddlepoint solution of the Euclidean action describing the simultaneous decay of the phases in all the junctions. When the current is reduced, a crossover to a regime takes place, where the decay occurs via an "elastic" saddlepoint solution and the phases across the junctions leave the metastable state one after another. This leads to an increased decay rate compared with the rigid case both in the thermal and the quantum regime. The rigid-to-elastic crossover can be sharp or smooth analogous to first- or second- order phase transitions, respectively. The various regimes are summarized in a current-temperature decay diagram.Comment: 11 pages, RevTeX, 3 PS-figures, revised versio

    Critical generalized inverse participation ratio distributions

    Full text link
    The system size dependence of the fluctuations in generalized inverse participation ratios (IPR's) Iα(q)I_{\alpha}(q) at criticality is investigated numerically. The variances of the IPR logarithms are found to be scale-invariant at the macroscopic limit. The finite size corrections to the variances decay algebraically with nontrivial exponents, which depend on the Hamiltonian symmetry and the dimensionality. The large-qq dependence of the asymptotic values of the variances behaves as q2q^2 according to theoretical estimates. These results ensure the self-averaging of the corresponding generalized dimensions.Comment: RevTex4, 5 pages, 4 .eps figures, to be published in Phys. Rev.

    Magnetic Field Effect for Two Electrons in a Two Dimensional Random Potential

    Full text link
    We study the problem of two particles with Coulomb repulsion in a two-dimensional disordered potential in the presence of a magnetic field. For the regime, when without interaction all states are well localized, it is shown that above a critical excitation energy electron pairs become delocalized by interaction. The transition between the localized and delocalized regimes goes in the same way as the metal-insulator transition at the mobility edge in the three dimensional Anderson model with broken time reversal symmetry.Comment: revtex, 7 pages, 6 figure

    Transition to an Insulating Phase Induced by Attractive Interactions in the Disordered Three-Dimensional Hubbard Model

    Full text link
    We study numerically the interplay of disorder and attractive interactions for spin-1/2 fermions in the three-dimensional Hubbard model. The results obtained by projector quantum Monte Carlo simulations show that at moderate disorder, increasing the attractive interaction leads to a transition from delocalized superconducting states to the insulating phase of localized pairs. This transition takes place well within the metallic phase of the single-particle Anderson model.Comment: revtex, 4 pages, 3 figure

    Crossovers in the thermal decay of metastable states in discrete systems

    Full text link
    The thermal decay of linear chains from a metastable state is investigated. A crossover from rigid to elastic decay occurs when the number of particles, the single particle energy barrier or the coupling strength between the particles is varied. In the rigid regime, the single particle energy barrier is small compared to the coupling strength and the decay occurs via a uniform saddlepoint solution, with all degrees of freedom decaying instantly. Increasing the barrier one enters the elastic regime, where the decay is due to bent saddlepoint configurations using the elasticity of the chain to lower their activation energy. Close to the rigid-to-elastic crossover, nucleation occurs at the boundaries of the system. However, in large systems, a second crossover from boundary to bulk nucleation can be found within the elastic regime, when the single particle energy barrier is further increased. We compute the decay rate in the rigid and in the elastic regimes within the Gaussian approximation. Around the rigid-to-elastic crossover, the calculations are performed beyond the steepest descent approximation. In this region, the prefactor exhibits a scaling property. The theoretical results are discussed in the context of discrete Josephson transmission lines and pancake vortex stacks that are pinned by columnar defects.Comment: 13 pages, RevTeX, 7 PS-figure

    Phase diagram of localization in a magnetic field

    Full text link
    The phase diagram of localization is numerically calculated for a three-dimensional disordered system in the presence of a magnetic field using the Peierls substitution. The mobility edge trajectory shifts in the energy-disorder space when increasing the field. In the band center, localized states near the phase boundary become delocalized. The obtained field dependence of the critical disorder is in agreement with a power law behavior expected from scaling theory. Close to the tail of the band the magnetic field causes localization of extended states.Comment: 4 pages, RevTeX, 3 PS-figures (4 extra references are included, minor additions), to appear in Phys. Rev. B as a Brief Repor
    corecore