2,140 research outputs found

    The drive system of the Major Atmospheric Gamma-ray Imaging Cherenkov Telescope

    Full text link
    The MAGIC telescope is an imaging atmospheric Cherenkov telescope, designed to observe very high energy gamma-rays while achieving a low energy threshold. One of the key science goals is fast follow-up of the enigmatic and short lived gamma-ray bursts. The drive system for the telescope has to meet two basic demands: (1) During normal observations, the 72-ton telescope has to be positioned accurately, and has to track a given sky position with high precision at a typical rotational speed in the order of one revolution per day. (2) For successfully observing GRB prompt emission and afterglows, it has to be powerful enough to position to an arbitrary point on the sky within a few ten seconds and commence normal tracking immediately thereafter. To meet these requirements, the implementation and realization of the drive system relies strongly on standard industry components to ensure robustness and reliability. In this paper, we describe the mechanical setup, the drive control and the calibration of the pointing, as well as present measurements of the accuracy of the system. We show that the drive system is mechanically able to operate the motors with an accuracy even better than the feedback values from the axes. In the context of future projects, envisaging telescope arrays comprising about 100 individual instruments, the robustness and scalability of the concept is emphasized.Comment: 15 pages, 12 (10) figures, submitted to Astroparticle Physics, a high resolution version of the paper (particularly fig. 1) is available at http://publications.mppmu.mpg.de/2008/MPP-2008-101/FullText.pd

    PYRAMIR: Calibration and operation of a pyramid near-infrared wavefront sensor

    Full text link
    The concept of pyramid wavefront sensors (PWFS) has been around about a decade by now. However, there is still a great lack of characterizing measurements that allow the best operation of such a system under real life conditions at an astronomical telescope. In this article we, therefore, investigate the behavior and robustness of the pyramid infrared wavefront sensor PYRAMIR mounted at the 3.5 m telescope at the Calar Alto Observatory under the influence of different error sources both intrinsic to the sensor, and arising in the preceding optical system. The intrinsic errors include diffraction effects on the pyramid edges and detector read out noise. The external imperfections consist of a Gaussian profile in the intensity distribution in the pupil plane during calibration, the effect of an optically resolved reference source, and noncommon-path aberrations. We investigated the effect of three differently sized reference sources on the calibration of the PWFS. For the noncommon-path aberrations the quality of the response of the system is quantified in terms of modal cross talk and aliasing. We investigate the special behavior of the system regarding tip-tilt control. From our measurements we derive the method to optimize the calibration procedure and the setup of a PWFS adaptive optics (AO) system. We also calculate the total wavefront error arising from aliasing, modal cross talk, measurement error, and fitting error in order to optimize the number of calibrated modes for on-sky operations. These measurements result in a prediction of on-sky performance for various conditions

    Field-Induced Two-Step Phase Transitions in the Singlet Ground State Triangular Antiferromagnet CsFeBr3_3

    Full text link
    The ground state of the stacked triangular antiferromagnet CsFeBr3_3 is a spin singlet due to the large single ion anisotropy D(Sz)2D(S^z)^2. The field-induced magnetic ordering in this compound was investigated by the magnetic susceptibility, the magnetization process and specific heat measurements for an external field parallel to the cc-axis. Unexpectedly, two phase transitions were observed in the magnetic field HH higher than 3 T. The phase diagram for temperature versus magnetic field was obtained. The mechanism leading to the successive phase transitions is discussed.Comment: 8 pages, 9 figures, 10 eps files, jpsj styl

    Live Biofeedback as a User Interface Design Element: A Review of the Literature

    Get PDF
    With the advances in sensor technology and real-time processing of neurophysiological data, a growing body of academic literature has begun to explore how live biofeedback can be integrated into information systems for everyday use. While researchers have traditionally studied live biofeedback in the clinical domain, the proliferation of affordable mobile sensor technology enables researchers and practitioners to consider live biofeedback as a user interface element in contexts such as decision support, education, and gaming. In order to establish the current state of research on live biofeedback, we conducted a literature review on studies that examine self and foreign live biofeedback based on neurophysiological data for healthy subjects in an information systems context. By integrating a body of highly fragmented work from computer science, engineering and technology, information systems, medical science, and psychology, this paper synthesizes results from existing research, identifies knowledge gaps, and suggests directions for future research. In this vein, this review can serve as a reference guide for researchers and practitioners on how to integrate self and foreign live biofeedback into information systems for everyday use

    Dynamics of a Quantum Phase Transition

    Full text link
    We present two approaches to the dynamics of a quench-induced phase transition in quantum Ising model. The first one retraces steps of the standard approach to thermodynamic second order phase transitions in the quantum setting. The second one is purely quantum, based on the Landau-Zener formula for transition probabilities in avoided level crossings. We show that the two approaches yield compatible results for the scaling of the defect density with the quench rate. We exhibit similarities between them, and comment on the insights they give into dynamics of quantum phase transitions.Comment: 4 pages, 3 figures. Replaced by revised versio

    Quantum computations with atoms in optical lattices: marker qubits and molecular interactions

    Full text link
    We develop a scheme for quantum computation with neutral atoms, based on the concept of "marker" atoms, i.e., auxiliary atoms that can be efficiently transported in state-independent periodic external traps to operate quantum gates between physically distant qubits. This allows for relaxing a number of experimental constraints for quantum computation with neutral atoms in microscopic potential, including single-atom laser addressability. We discuss the advantages of this approach in a concrete physical scenario involving molecular interactions.Comment: 15 pages, 14 figure

    B cell directed cytokines

    Get PDF
    • …
    corecore