448 research outputs found

    Purification and partial characterization of prostate-derived growth factor.

    Full text link

    Illness tracking in SARS-CoV-2 tested persons using a smartphone app: a non-interventional, prospective, cohort study

    Full text link
    There are few data on the range and severity of symptoms of SARS-CoV-2 infection or the impact on life quality in infected, previously healthy, young adults such as Swiss Armed Forces personnel. It is also unclear if an app can be used to remotely monitor symptoms in persons who test positive. Using a smartphone app called ITITP (Illness Tracking in Tested Persons) and weekly pop-up questionnaires, we aimed to evaluate the spectrum, duration, and impact of symptoms reported after a positive SARS-CoV-2 test according to sex, age, location, and comorbidities, and to compare these to responses from persons who tested negative. We followed up 502 participants (57% active participation), including 68 (13.5%) positive tested persons. Hospitalisation was reported by 6% of the positive tested participants. We found that positives reported significantly more symptoms that are typical of COVID-19 compared to negatives. These symptoms with odds ratio (OR > 1) were having difficulty breathing (OR 3.35; 95% CI: 1.16, 9.65; p = 0.03), having a reduced sense of taste (OR 5.45; 95% CI: 1.22, 24.34; p = 0.03) and a reduced sense of smell (OR 18.24; 95% CI: 4.23, 78.69; p < 0.001). Using a random forest model, we showed that tiredness was the single symptom that was rated as having a significant impact on daily activities, whereas the other symptoms, although frequent, had less impact. The study showed that the use of an app was feasible to remotely monitor symptoms in persons infected with SARS-CoV-2 and could be adapted for other settings and new pandemic phases such as the current Omicron wave

    Platelet factor-4 and its p17-70 peptide inhibit myeloma proliferation and angiogenesis in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Angiogenesis plays an important role in the development of multiple myeloma (MM). The interaction between MM cells and the bone marrow microenvironment stimulates the proliferation and migration of endothelial progenitor cells (EPCs). Vascular endothelial growth factor (VEGF) contributes to the formation of new blood vessels by actively recruiting circulating EPCs. The production of proangiogenic and antiangiogenic factors is also dysregulated in MM. Platelet factor 4 (PF4) is a potent angiostatic cytokine that inhibits angiogenesis and tumor growth in several animal models.</p> <p>Methods</p> <p>In this study, we stably transfected human myeloma cell lines with the PF4 gene or the sequence encoding its more potent p17-70 peptide and investigated the effects of PF4 and p17-70 on angiogenesis and tumor growth <it>in vitro </it>and in a SCID-rab myeloma model.</p> <p>Results</p> <p>PF4 and p17-70 significantly attenuated VEGF production, both <it>in vitro </it>and <it>in vivo</it>. In a migration study using a Transwell system, PF4 or p17-70 markedly suppressed the migration of co-cultured human endothelial progenitor cells. PF4 or p17-70 also caused a significant reduction in microvessel densities in myeloma xenografts and markedly reduced the tumor volume in the SCID mice. Kaplan-Meier analysis demonstrated that PF4 and p17-70 significantly extended the overall survival of SCID mice bearing human myeloma xenografts.</p> <p>Conclusions</p> <p>Our findings indicate that PF4 or p17-70 could be valuable in combating multiple myeloma by disrupting tumor angiogenesis.</p

    Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms

    Get PDF
    The hippocampal expression profiles of wild-type mice and mice transgenic for δC-doublecortin-like kinase were compared with Solexa/Illumina deep sequencing technology and five different microarray platforms. With Illumina's digital gene expression assay, we obtained ∼2.4 million sequence tags per sample, their abundance spanning four orders of magnitude. Results were highly reproducible, even across laboratories. With a dedicated Bayesian model, we found differential expression of 3179 transcripts with an estimated false-discovery rate of 8.5%. This is a much higher figure than found for microarrays. The overlap in differentially expressed transcripts found with deep sequencing and microarrays was most significant for Affymetrix. The changes in expression observed by deep sequencing were larger than observed by microarrays or quantitative PCR. Relevant processes such as calmodulin-dependent protein kinase activity and vesicle transport along microtubules were found affected by deep sequencing but not by microarrays. While undetectable by microarrays, antisense transcription was found for 51% of all genes and alternative polyadenylation for 47%. We conclude that deep sequencing provides a major advance in robustness, comparability and richness of expression profiling data and is expected to boost collaborative, comparative and integrative genomics studies

    Global Developmental Gene Expression and Pathway Analysis of Normal Brain Development and Mouse Models of Human Neuronal Migration Defects

    Get PDF
    Heterozygous LIS1 mutations are the most common cause of human lissencephaly, a human neuronal migration defect, and DCX mutations are the most common cause of X-linked lissencephaly. LIS1 is part of a protein complex including NDEL1 and 14-3-3ε that regulates dynein motor function and microtubule dynamics, while DCX stabilizes microtubules and cooperates with LIS1 during neuronal migration and neurogenesis. Targeted gene mutations of Lis1, Dcx, Ywhae (coding for 14-3-3ε), and Ndel1 lead to neuronal migration defects in mouse and provide models of human lissencephaly, as well as aid the study of related neuro-developmental diseases. Here we investigated the developing brain of these four mutants and wild-type mice using expression microarrays, bioinformatic analyses, and in vivo/in vitro experiments to address whether mutations in different members of the LIS1 neuronal migration complex lead to similar and/or distinct global gene expression alterations. Consistent with the overall successful development of the mutant brains, unsupervised clustering and co-expression analysis suggested that cell cycle and synaptogenesis genes are similarly expressed and co-regulated in WT and mutant brains in a time-dependent fashion. By contrast, focused co-expression analysis in the Lis1 and Ndel1 mutants uncovered substantial differences in the correlation among pathways. Differential expression analysis revealed that cell cycle, cell adhesion, and cytoskeleton organization pathways are commonly altered in all mutants, while synaptogenesis, cell morphology, and inflammation/immune response are specifically altered in one or more mutants. We found several commonly dysregulated genes located within pathogenic deletion/duplication regions, which represent novel candidates of human mental retardation and neurocognitive disabilities. Our analysis suggests that gene expression and pathway analysis in mouse models of a similar disorder or within a common pathway can be used to define novel candidates for related human diseases

    DNA repair, genome stability and cancer: a historical perspective

    Get PDF
    The multistep process of cancer progresses over many years. The prevention of mutations by DNA repair pathways led to an early appreciation of a role for repair in cancer avoidance. However, the broader role of the DNA damage response (DDR) emerged more slowly. In this Timeline article, we reflect on how our understanding of the steps leading to cancer developed, focusing on the role of the DDR. We also consider how our current knowledge can be exploited for cancer therapy
    corecore