31 research outputs found

    Electrically-driven phase transition in magnetite nanostructures

    Full text link
    Magnetite (Fe3_{3}O4_{4}), an archetypal transition metal oxide, has been used for thousands of years, from lodestones in primitive compasses[1] to a candidate material for magnetoelectronic devices.[2] In 1939 Verwey[3] found that bulk magnetite undergoes a transition at TV_{V} \approx 120 K from a high temperature "bad metal" conducting phase to a low-temperature insulating phase. He suggested[4] that high temperature conduction is via the fluctuating and correlated valences of the octahedral iron atoms, and that the transition is the onset of charge ordering upon cooling. The Verwey transition mechanism and the question of charge ordering remain highly controversial.[5-11] Here we show that magnetite nanocrystals and single-crystal thin films exhibit an electrically driven phase transition below the Verwey temperature. The signature of this transition is the onset of sharp conductance switching in high electric fields, hysteretic in voltage. We demonstrate that this transition is not due to local heating, but instead is due to the breakdown of the correlated insulating state when driven out of equilibrium by electrical bias. We anticipate that further studies of this newly observed transition and its low-temperature conducting phase will shed light on how charge ordering and vibrational degrees of freedom determine the ground state of this important compound.Comment: 17 pages, 4 figure

    A compensating monochromator crystal bender at the HMI multipole wiggler beamline MAGS

    No full text
    A compensating watercooled crystal bender for high heat loads has been built and successfully commissioned at the new multipole wiggler beamline MAGS of the Hahn Meitner Institute at the synchrotron radiation source BESSY. The beamline takes a 3 x 0.3 mrad fan of the wiggler beam, corresponding to a heat load of up to 2000 W. Although the crystal bender was originally designed for maximum heat loads of 600 W, it was found to work with heat loads of up to 800 W, reducing the Si 111 rocking curve width from 22 to 11 arcsec at the Cu K edge 8.9 keV . In addition, the good mechanical reproducibility of the device is illustrate
    corecore