55,014 research outputs found

    DIRBE Minus 2MASS: Confirming the CIRB in 40 New Regions at 2.2 and 3.5 Microns

    Full text link
    With the release of the 2MASS All-Sky Point Source Catalog, stellar fluxes from 2MASS are used to remove the contribution due to Galactic stars from the intensity measured by DIRBE in 40 new regions in the North and South Galactic polar caps. After subtracting the interplanetary and Galactic foregrounds, a consistent residual intensity of 14.69 +/- 4.49 kJy/sr at 2.2 microns is found. Allowing for a constant calibration factor between the DIRBE 3.5 microns and the 2MASS 2.2 microns fluxes, a similar analysis leaves a residual intensity of 15.62 +/- 3.34 kJy/sr at 3.5 microns. The intercepts of the DIRBE minus 2MASS correlation at 1.25 microns show more scatter and are a smaller fraction of the foreground, leading to a still weak limit on the CIRB of 8.88 +/- 6.26 kJy/sr (1 sigma).Comment: 25 pages LaTeX, 10 figures, 5 tables; Version accepted by the ApJ. Includes minor changes to the text including further discussion of zodiacal light issues and the allowance for variable stars in computing uncertainties in the stellar contribution to the DIRBE intensitie

    Improved toughness of refractory compounds

    Get PDF
    The concept of grain-boundary-engineering through elimination of the grain-boundary silicate phase in silicon nitride was developed. The process involved removal of the silica from the nitride powder via a thermal treatment coupled with the use of nitride additives to compensate the remaining oxygen. Magnesium and aluminum nitrides are found to be the most effective additive for use as oxygen compensators. Strength decreases at elevated temperatures are not observed in the alumina containing material. The creep rate of a dual additive sialon composition was two orders of magnitude lower at 1400 C than commercial silicon nitride. A cursory analysis of the creep mechanism indicate that grain-boundary sliding is avoided through elimination of the grain-boundary silicate phase

    Bedrock geology of the northern Columbia Plateau and adjacent areas

    Get PDF
    The Columbia Plateau is surrounded by a complex assemblage of highly deformed Precambrian to lower Tertiary continental and oceanic rocks that reflects numerous episodes of continental accretion. The plateau itself is comprised of the Columbia River basalt group formed between about 16.5 x 1 million years B.P. and 6 x 1 million years B.P. Eruptions were infrequent between about 14 and 6 x 1 million years B.P., allowing time for erosion and deformation between successive outpourings. The present-day courses of much of the Snake River, and parts of the Columbia River, across the plateau date from this time. Basalt produced during this waning activity is more heterogeneous chemically and isotopically than older flows, reflecting its prolonged period of volcanism

    Evaluating the psychometric properties of the multigroup ethnic identity measure (MEIM) within the United Kingdom

    Get PDF
    In the present study, we examined the psychometric properties of the Multigroup Ethnic Identity Measure (MEIM) (Phinney, 1992; Phinney & Alipuria, 1990) among an ethnically diverse sample within the United Kingdom. In initial analyses, we evaluated the goodness-of-fit of a one-factor model (i.e., global ethnic identity) and the goodness-of-fit of a two-factor model (i.e., correlated but distinct Exploration and Commitment components). Results of initial confirmatory factor analyses led us to reject both the one-factor and two-factor models. Results of subsequent exploratory and confirmatory factor analyses revealed a three-factor structure (i.e., correlated but distinct Behavioral, Cognitive, and Affective components of ethnic identity) among the sample as a whole (n = 234) and among Asian Indian persons (n = 88) in particular, though resulst were mixed among White U.K./Irish persons (n = 54) in particular. Implications for the study of ethnicity-related concepts in the incerasibgly multi-cultural U.K. are discussed

    Dichroism for orbital angular momentum using parametric amplification

    Get PDF
    We theoretically analyze parametric amplification as a means to produce dichroism based on the orbital angular momentum (OAM) of an incident signal field. The nonlinear interaction is shown to provide differential gain between signal states of differing OAM, the peak gain occurring at half the OAM of the pump field

    Orbital thermal analysis of lattice structured spacecraft using color video display techniques

    Get PDF
    A color video display technique is demonstrated as a tool for rapid determination of thermal problems during the preliminary design of complex space systems. A thermal analysis is presented for the lattice-structured Earth Observation Satellite (EOS) spacecraft at 32 points in a baseline non Sun-synchronous (60 deg inclination) orbit. Large temperature variations (on the order of 150 K) were observed on the majority of the members. A gradual decrease in temperature was observed as the spacecraft traversed the Earth's shadow, followed by a sudden rise in temperature (100 K) as the spacecraft exited the shadow. Heating rate and temperature histories of selected members and color graphic displays of temperatures on the spacecraft are presented

    Static and Dynamic Properties of Trapped Fermionic Tonks-Girardeau Gases

    Full text link
    We investigate some exact static and dynamic properties of one-dimensional fermionic Tonks-Girardeau gases in tight de Broglie waveguides with attractive p-wave interactions induced by a Feshbach resonance. A closed form solution for the one-body density matrix for harmonic trapping is analyzed in terms of its natural orbitals, with the surprising result that for odd, but not for even, numbers of fermions the maximally occupied natural orbital coincides with the ground harmonic oscillator orbital and has the maximally allowed fermionic occupancy of unity. The exact dynamics of the trapped gas following turnoff of the p-wave interactions are explored.Comment: 4 pages, 2 figures, submitted to PR

    A Third Planet Orbiting HIP 14810

    Get PDF
    We present new precision radial velocities and a three-planet Keplerian orbit fit for the V = 8.5, G5 V star HIP 14810. We began observing this star at Keck Observatory as part of the N2K Planet Search Project. Wright et al. (2007) announced the inner two planets to this system, and subsequent observations have revealed the outer planet planet and the proper orbital solution for the middle planet. The planets have minimum masses of 3.9, 1.3, and 0.6 M_Jup and orbital periods of 6.67, 147.7, and 952 d, respectively. We have numerically integrated the family of orbital solutions consistent with the data and find that they are stable for at least 10^6 yr. Our photometric search shows that the inner planet does not transit.Comment: ApJL, accepte
    corecore