53 research outputs found
Propagators in Coulomb gauge from SU(2) lattice gauge theory
A thorough study of 4-dimensional SU(2) Yang-Mills theory in Coulomb gauge is
performed using large scale lattice simulations. The (equal-time) transverse
gluon propagator, the ghost form factor d(p) and the Coulomb potential V_{coul}
(p) ~ d^2(p) f(p)/p^2 are calculated. For large momenta p, the gluon propagator
decreases like 1/p^{1+\eta} with \eta =0.5(1). At low momentum, the propagator
is weakly momentum dependent. The small momentum behavior of the Coulomb
potential is consistent with linear confinement. We find that the inequality
\sigma_{coul} \ge \sigma comes close to be saturated. Finally, we provide
evidence that the ghost form factor d(p) and f(p) acquire IR singularities,
i.e., d(p) \propto 1/\sqrt{p} and f(p) \propto 1/p, respectively. It turns out
that the combination g_0^2 d_0(p) of the bare gauge coupling g_0 and the bare
ghost form factor d_0(p) is finite and therefore renormalization group
invariant.Comment: 10 pages, 7 figure
Numerical Study of the Ghost-Gluon Vertex in Landau gauge
We present a numerical study of the ghost-gluon vertex and of the
corresponding renormalization function \widetilde{Z}_1(p^2) in minimal Landau
gauge for SU(2) lattice gauge theory. Data were obtained for three different
lattice volumes (V = 4^4, 8^4, 16^4) and for three lattice couplings \beta =
2.2, 2.3, 2.4. Gribov-copy effects have been analyzed using the so-called
smeared gauge fixing. We also consider two different sets of momenta (orbits)
in order to check for possible effects due to the breaking of rotational
symmetry. The vertex has been evaluated at the asymmetric point (0;p,-p) in
momentum-subtraction scheme. We find that \widetilde{Z}_1(p^2) is approximately
constant and equal to 1, at least for momenta p > ~ 1 GeV. This constitutes a
nonperturbative verification of the so-called nonrenormalization of the Landau
ghost-gluon vertex. Finally, we use our data to evaluate the running coupling
constant \alpha_s(p^2).Comment: 19 pages, 6 figures, 9 tables, using axodraw.sty; minor modifications
in the abstract, introduction and conclusion
On practical problems to compute the ghost propagator in SU(2) lattice gauge theory
In SU(2) lattice pure gauge theory we study numerically the dependence of the
ghost propagator G(p) on the choice of Gribov copies in Lorentz (or Landau)
gauge. We find that the effect of Gribov copies is essential in the scaling
window region, however, it tends to decrease with increasing beta. On the other
hand, we find that at larger beta-values very strong fluctuations appear which
can make problematic the calculation of the ghost propagator.Comment: 15 pages, 5 postscript figures. 2 Figures added Revised version as to
be published in Phys.Rev.
Inconsistency of Naive Dimensional Regularizations and Quantum Correction to Non-Abelian Chern-Simons-Matter Theory Revisited
We find the inconsistency of dimensional reduction and naive dimensional
regularization in their applications to Chern-Simons type gauge theories.
Further we adopt a consistent dimensional regularization to investigate the
quantum correction to non-Abelian Chern-Simons term coupled with fermionic
matter. Contrary to previous results, we find that not only the Chern-Simons
coefficient receives quantum correction from spinor fields, but the spinor
field also gets a finite quantum correction.Comment: 19 pages, RevTex, Feynman diagrams drawn by FEYNMAN routin
The Gribov-Zwanziger action in the presence of the gauge invariant, nonlocal mass operator in the Landau gauge
We prove that the nonlocal gauge invariant mass dimension two operator
can be consistently added to the
Gribov-Zwanziger action, which implements the restriction of the path
integral's domain of integration to the first Gribov region when the Landau
gauge is considered. We identify a local polynomial action and prove the
renormalizability to all orders of perturbation theory by employing the
algebraic renormalization formalism. Furthermore, we also pay attention to the
breaking of the BRST invariance, and to the consequences that this has for the
Slavnov-Taylor identity.Comment: 30 page
- …