1,887 research outputs found

    Contralateral inhibition of click- and chirp-evoked human compound action potentials

    Get PDF
    Cochlear outer hair cells (OHC) receive direct efferent feedback from the caudal auditory brainstem via the medial olivocochlear (MOC) bundle. This circuit provides the neural substrate for the MOC reflex, which inhibits cochlear amplifier gain and is believed to play a role in listening in noise and protection from acoustic overexposure. The human MOC reflex has been studied extensively using otoacoustic emissions (OAE) paradigms; however, these measurements are insensitive to subsequent “downstream” efferent effects on the neural ensembles that mediate hearing. In this experiment, click- and chirp-evoked auditory nerve compound action potential (CAP) amplitudes were measured electrocochleographically from the human eardrum without and with MOC reflex activation elicited by contralateral broadband noise. We hypothesized that the chirp would be a more optimal stimulus for measuring neural MOC effects because it synchronizes excitation along the entire length of the basilar membrane and thus evokes a more robust CAP than a click at low to moderate stimulus levels. Chirps produced larger CAPs than clicks at all stimulus intensities (50–80 dB ppeSPL). MOC reflex inhibition of CAPs was larger for chirps than clicks at low stimulus levels when quantified both in terms of amplitude reduction and effective attenuation. Effective attenuation was larger for chirp- and click-evoked CAPs than for click-evoked OAEs measured from the same subjects. Our results suggest that the chirp is an optimal stimulus for evoking CAPs at low stimulus intensities and for assessing MOC reflex effects on the auditory nerve. Further, our work supports previous findings that MOC reflex effects at the level of the auditory nerve are underestimated by measures of OAE inhibition

    Optimized Confinement of Fermions in Two Dimensions

    Full text link
    One of the challenging features of studying model Hamiltonians with cold atoms in optical lattices is the presence of spatial inhomogeneities induced by the confining potential, which results in the coexistence of different phases. This paper presents Quantum Monte Carlo results comparing meth- ods for confining fermions in two dimensions, including conventional diagonal confinement (DC), a recently proposed 'off-diagonal confinement' (ODC), as well as a trap which produces uniform den- sity in the lattice. At constant entropy and for currently accessible temperatures, we show that the current DC method results in the strongest magnetic signature, primarily because of its judicious use of entropy sinks at the lattice edge. For d-wave pairing, we show that a constant density trap has the more robust signal and that ODC can implement a constant density profile. This feature is important to any prospective search for superconductivity in optical lattices

    Isentropic Curves at Magnetic Phase Transitions

    Full text link
    Experiments on cold atom systems in which a lattice potential is ramped up on a confined cloud have raised intriguing questions about how the temperature varies along isentropic curves, and how these curves intersect features in the phase diagram. In this paper, we study the isentropic curves of two models of magnetic phase transitions- the classical Blume-Capel Model (BCM) and the Fermi Hubbard Model (FHM). Both Mean Field Theory (MFT) and Monte Carlo (MC) methods are used. The isentropic curves of the BCM generally run parallel to the phase boundary in the Ising regime of low vacancy density, but intersect the phase boundary when the magnetic transition is mainly driven by a proliferation of vacancies. Adiabatic heating occurs in moving away from the phase boundary. The isentropes of the half-filled FHM have a relatively simple structure, running parallel to the temperature axis in the paramagnetic phase, and then curving upwards as the antiferromagnetic transition occurs. However, in the doped case, where two magnetic phase boundaries are crossed, the isentrope topology is considerably more complex

    LYMPHOCYTE MEMBRANE DYNAMICS : METABOLIC RELEASE OF CELL SURFACE PROTEINS

    Get PDF
    Cell surface proteins of normal and neoplastic lymphocytes were labeled with iodide-125I by lactoperoxidase-catalyzed iodination. Incubation of 125I-labeled iodide cells in vitro resulted in the release of iodinated surface proteins at a rapid rate which was dependent on cellular respiration and protein synthesis. Comparisons by disc electrophoresis showed a marked similarity between urea-soluble surface proteins extracted from iodinated cells and iodinated material released by the cells during in vitro incubation. The rate of release of cell surface proteins from thymus cells was three times faster than that of spleen cells or bone marrow-derived thoracic duct lymphocytes. In addition, different proteins were released at different rates as evidenced by the rate of release of 125I of rabbit anti-mouse immunoglobulin specifically bound to mouse spleen cells and comparisons by disc electrophoresis of urea-soluble iodinated surface proteins extracted from cells before and after incubation. The results suggest that a dynamic state exists at the cell surface. The possible role of the release of cell surface proteins in cell regulation and communication is discussed

    Immune Amplification of Murine CD8+ Suppressor T Cells Induced via An Immune-Privileged Site: Quantifying Suppressor T Cells Functionally

    Get PDF
    BACKGROUND: CD8(+) suppressor T cells exert antigen-specific suppression of the expression of hypersensitivity by activated T cells. Therefore, CD8(+) suppressor T cells serve a major regulatory role for the control of active immunity. Accordingly, the number and/or activity of CD8(+) suppressor T cells should be influenced by an immune response to the antigen. To test this hypothesis we used an adoptive transfer assay that measures the suppression of the expression of delayed-type hypersensitivity (DTH) by CD8(+) suppressor T cells to quantify the antigen-specific suppression of DTH by these suppressor T cells. METHODS: Suppressor T cells were induced in the spleens of mice by the injection of antigen into the anterior chamber of an eye. Following this injection, the mice were immunized by the same antigen injected into the anterior chamber. Spleen cells recovered from these mice (AC-SPL cells) were titrated in an adoptive transfer assay to determine the number of AC-SPL cells required to effect a 50% reduction of antigen-induced swelling (Sw50) in the footpad of immunized mice challenged by antigen. RESULTS: Suppression of the expression of DTH is proportional to the number of AC-SPL cells injected into the site challenged by antigen. The number of AC-SPL cells required for a 50% reduction in DTH-induced swelling is reduced by injecting a cell population enriched for CD8(+) AC-SPL cells. Immunizing the mice receiving intracameral antigen to the same antigen decreases the RSw50 of AC-SPL cells required to inhibit the expression of DTH. CONCLUSIONS: The results provide the first quantitative demonstration that the numbers of antigen-specific splenic CD8(+) suppressor T cells are specifically amplified by antigen during an immune response
    • …
    corecore