5,000 research outputs found

    Which way do I go? Neural activation in response to feedback and spatial processing in a virtual T-maze

    No full text
    In 2 human event-related brain potential (ERP) experiments, we examined the feedback error-related negativity (fERN), an ERP component associated with reward processing by the midbrain dopamine system, and the N170, an ERP component thought to be generated by the medial temporal lobe (MTL), to investigate the contributions of these neural systems toward learning to find rewards in a "virtual T-maze" environment. We found that feedback indicating the absence versus presence of a reward differentially modulated fERN amplitude, but only when the outcome was not predicted by an earlier stimulus. By contrast, when a cue predicted the reward outcome, then the predictive cue (and not the feedback) differentially modulated fERN amplitude. We further found that the spatial location of the feedback stimuli elicited a large N170 at electrode sites sensitive to right MTL activation and that the latency of this component was sensitive to the spatial location of the reward, occurring slightly earlier for rewards following a right versus left turn in the maze. Taken together, these results confirm a fundamental prediction of a dopamine theory of the fERN and suggest that the dopamine and MTL systems may interact in navigational learning tasks

    Intermediate phase of the one dimensional half-filled Hubbard-Holstein model

    Get PDF
    We present a detailed numerical study of the Hubbard-Holstein model in one dimension at half filling, including full finite-frequency quantum phonons. At half filling, the effects of the electron-phonon and electron-electron interactions compete, with the Holstein phonon coupling acting as an effective negative Hubbard onsite interaction U that promotes on-site electron pairs and a Peierls charge-density wave state. Most previous work on this model has assumed that only Peierls or U>0 Mott insulator phases are possible at half filling. However, there has been speculation that a third metallic phase exists between the Peierls and Mott phases. We present results confirming the intermediate metallic phase, and show that the Luttinger liquid correlation exponent K_rho>1 in this region, indicating dominant superconducting pair correlations. We explore the full phase diagram as a function of onsite Hubbard U, phonon coupling constant, and phonon frequency.Comment: 4 pages, 4 EPS figures. v2: typos corrected. To appear in Phys. Rev. Let

    Theory of triangular lattice quasi-one-dimensional charge-transfer solids

    Full text link
    Recent investigations of the magnetic properties and the discovery of superconductivity in quasi-one-dimensional triangular lattice organic charge-transfer solids have indicated the severe limitations of the effective 1/2-filled band Hubbard model for these and related systems. Our computational studies of these materials within a 1/4-filled band Hubbard model in which the organic monomer molecules, and not their dimers, constitute the sites of the Hamiltonian are able to reproduce the experimental results. We ascribe the spin gap transition in kappa-(BEDT-TTF)_2B(CN)_4 to the formation of a two-dimensional paired-electron crystal and make the testable prediction that the spin gap will be accompanied by charge-ordering and period doubling in two directions. We find enhancement of the long-range component of superconducting pairing correlations by the Hubbard repulsive interaction for band parameters corresponding to kappa-(BEDT-TTF)_2CF_3SO_3. The overall results strongly support a valence bond theory of superconductivity we have proposed recently.Comment: 8 pages, 7 figure
    corecore