2,769 research outputs found

    A Study of Finite Temperature Gauge Theory in (2+1) Dimensions

    Get PDF
    We determine the critical couplings and the critical exponents of the finite temperature transition in SU(2) and SU(3) pure gauge theory in (2+1) dimensions. We also measure Wilson loops at T=0T=0 on a wide range of β\beta values using APE smearing to improve the signal. We extract the string tension σ\sigma from a fit to large distances, including a string fluctuation term. With these two entities we calculate Tc/σT_c/\sqrt{\sigma}.Comment: Talk presented at LATTICE96(finite temperature), not espcrc2 style: 7 pages, 4 ps figures, 22 k

    Asymptotic Behavior of the Correlator for Polyakov Loops

    Get PDF
    The asymptotic behavior of the correlator for Polyakov loop operators separated by a large distance RR is determined for high temperature QCD. It is dominated by nonperturbative effects related to the exchange of magnetostatic gluons. To analyze the asymptotic behavior, the problem is formulated in terms of the effective field theory of QCD in 3 space dimensions. The Polyakov loop operator is expanded in terms of local gauge-invariant operators constructed out of the magnetostatic gauge field, with coefficients that can be calculated using resummed perturbation theory. The asymptotic behavior of the correlator is exp(MR)/R\exp(-MR)/R, where MM is the mass of the lowest-lying glueball in (2+1)(2+1)-dimensional QCD. This result implies that existing lattice calculations of the Polyakov loop correlator at the highest temperatures available do not probe the true asymptotic region in RR.Comment: 10 pages, NUHEP-TH-94-2

    Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths

    Get PDF
    We present a compact, fast, and versatile fiber-optic probe system for real-time determination of tissue optical properties from spatially resolved continuous-wave diffuse reflectance measurements. The system collects one set of reflectance data from six source-detector distances at four arbitrary wavelengths with a maximum overall sampling rate of 100 Hz. Multivariate calibration techniques based on two-dimensional polynomial fitting are employed to extract and display the absorption and reduced scattering coefficients in real-time mode. The four wavelengths of the current configuration are 660, 785, 805, and 974 nm, respectively. Cross-validation tests on a 6 x 7 calibration matrix of Intralipid-dye phantoms showed that the mean prediction error at, e.g., 785 nm was 2.8% for the absorption coefficient and 1.3% for the reduced scattering coefficient. The errors are relative to the range of the optical properties of the phantoms at 785 nm, which were 0-0.3/cm for the absorption coefficient and 6-16/cm for the reduced scattering coefficient. Finally, we also present and discuss results from preliminary skin tissue measurements. (C) 2001 Optical Society of Americ

    The equation of state for two flavor QCD at N_t=6

    Full text link
    We calculate the two flavor equation of state for QCD on lattices with lattice spacing a=(6T)^{-1} and find that cutoff effects are substantially reduced compared to an earlier study using a=(4T)^{-1}. However, it is likely that significant cutoff effects remain. We fit the lattice data to expected forms of the free energy density for a second order phase transition at zero-quark-mass, which allows us to extrapolate the equation of state to m_q=0 and to extract the speed of sound. We find that the equation of state depends weakly on the quark mass for small quark mass.Comment: 24 pages, latex, 11 postscipt figure

    The instanton liquid in QCD at zero and finite temperature

    Full text link
    In this paper we study the statistical mechanics of the instanton liquid in QCD. After introducing the partition function as well as the gauge field and quark induced interactions between instantons we describe a method to calculate the free energy of the instanton system. We use this method to determine the equilibrium density and the equation of state from numerical simulations of the instanton ensemble in QCD for various numbers of flavors. We find that there is a critical number of flavors above which chiral symmetry is restored in the groundstate. In the physical case of two light and one intermediate mass flavor the system undergoes a chiral phase transition at T140T\simeq 140 MeV. We show that the mechanism for this transition is a rearrangement of the instanton liquid, going from a disordered, random, phase at low temperatures to a strongly correlated, molecular, phase at high temperature. We also study the behavior of mesonic susceptibilities near the phase transition.Comment: 50 pages, revtex, 16 figures, uuencode

    Rapidly rotating Bose-Einstein condensates in anharmonic potentials

    Full text link
    Rapidly rotating Bose-Einstein condensates confined in anharmonic traps can exhibit a rich variety of vortex phases, including a vortex lattice, a vortex lattice with a hole, and a giant vortex. Using an augmented Thomas-Fermi variational approach to determine the ground state of the condensate in the rotating frame -- valid for sufficiently strongly interacting condensates -- we determine the transitions between these three phases for a quadratic-plus-quartic confining potential. Combining the present results with previous numerical simulations of small rotating condensates in such anharmonic potentials, we delineate the general structure of the zero temperature phase diagram.Comment: 5 pages, 5 figure

    Vortex oscillations in confined Bose-Einstein condensate interacting with 1D optical lattice

    Full text link
    We study Bose-Einstein condensate of atomic Boson gases trapped in a composite potential of a harmonic potential and an optical lattice potential. We found a series of collective excitations that induces localized vortex oscillations with a characteristic wavelength. The oscillations might be observed experimentally when radial confinement is tight. We present the excitation spectra of the vortex oscillation modes and propose a way to experimentally excite the modes.Comment: 5 pages, 7 figures. Title, abstract and references are update

    Testing improved actions for dynamical Kogut-Susskind quarks

    Get PDF
    We extend tests of "Naik" and "fat link" improvements of the Kogut-Susskind quark action to full QCD simulations, and verify that the improvements previously demonstrated in the quenched approximation apply also to dynamical quark simulations. We extend the study of flavor symmetry improvement to the complete set of pions, and find that the nonlocal pions are significantly heavier than the local non-Goldstone pion. These results can be used to estimate the lattice spacing necessary for realistic simulations with this action.Comment: 16 pages, LaTeX, PostScript figures include

    The Thermodynamics of Quarks and Gluons

    Full text link
    This is an introduction to the study of strongly interacting matter. We survey its different possible states and discuss the transition from hadronic matter to a plasma of deconfined quarks and gluons. Following this, we summarize the results provided by lattice QCD finite temperature and density, and then investigate the nature of the deconfinement transition. Finally we give a schematic overview of possible ways to study the properties of the quark-gluon plasma.Comment: 19 pages, 21 figures; lecture given at the QGP Winter School, Jaipur/India, Feb.1-3, 2008; to appear in Springer Lecture Notes in Physic

    Direct and Inverse Solutions for Thermal-and Stress-Transients and the Analytical Determination of Boundary Conditions Using Remote Temperature or Strain Data

    Get PDF
    From an analytical standpoint, a majority of calculations use known boundary conditions (temperature or flux) and the so-called direct route to determine internal temperatures, strains, and/or stresses. For such problems where the thermal boundary condition is known a priori, the analytical procedure and solutions are tractable for the linear case where the thermophysical properties are independent of temperature. On the other hand, the inverse route where the boundary conditions must be determined from remotely determined temperature and/or flux data is much more difficult mathematically, as well as inherently sensitive to data errors (i.e., ill-posed). When solutions are available, they are often restricted to a harsh, albeit unrealistic step change in temperature or flux and/or are only valid for relatively short time frames before temperature changes occur at the far boundary. While the two approaches may seem to be at odds with each other, a generalized direct solution based on polynomial temperature or strain-histories can also be used to determine unknown boundary conditions via least-squares determination of coefficients. Once the inverse problem (and unknown boundary condition) is solved via these coefficients, the resulting polynomial can then be used with the generalized direct solution to determine the thermal-and stress-states as a function of time and position. When used for both thick slabs and tubes, excellent agreement was seen for various test cases. In fact, the derived solutions appear to be well suited for many thermal scenarios, provided the analysis is restricted to the time interval used to determine the polynomial and the thermophysical properties that do not vary with temperature. Since temperature dependent properties can certainly be an issue that affects accuracy in these types of calculations, some recent analytical procedures for both direct and inverse solutions are also discussed
    corecore