13 research outputs found

    Sound velocity in indium at low temperatures

    No full text

    The influence of velocity of length change on tension development in skeletal muscle: Model calculations and experimental results

    No full text
    Force responses obtained during constant velocity length changes on skeletal muscle tissue are simulated by means of two cross-bridge models proposed by Huxley and Simmons (1971, Nature 233, 533–538) and by Julian et al. (1974, Biophys. J. 14 546–562). An implicit method was used for the numerical approximation in the simulations. The simulated force transients due to constant velocity length changes are found to be in qualitative agreement with re-investigated experimental results obtained from the whole sartorius muscle of the frog. A non-linear tension transient is observed, dependent both on amplitude and on velocity of release revealing an inflexion which gives the transient a shoulder shape. When velocity is increased the inflexion occurs earlier and at a lower tension value. A non-linear transient is observed during stretches performed at moderate velocities. Force responses are found to deviate concavely downwards from a linear time course. Simulations, however, predict a rather linear tension transient for comparable velocities. Implications of the experimental findings are discussed for both models

    Elastic properties of relaxed, activated, and rigor muscle fibers measured with microsecond resolution.

    Get PDF
    Tension responses due to small and rapid length changes (completed within 40 microseconds) were obtained from skinned single-fiber segments (4- to 7-mm length) of the iliofibularis muscle of the frog incubated in relaxing, rigor, and activating solution. The fibers were skinned by freeze-drying. The first 500 microseconds of the responses for all three conditions could be described with a linear model, in which the fiber is regarded as a rod composed of infinitesimally small identical segments, containing an undamped elastic element, two damped elastic elements and a mass in series. An additional damped elastic element was needed to describe tension responses of activated fibers up to the first 5 ms. Consequently phase 1 and phase 2 of activated fibers can be described with four apparent elastic constants and three time constants. The results indicate that fully activated fibers and fibers in rigor have similar elastic properties within the first 500 microseconds of tension responses. This points either to an equal number of attached cross-bridges in rigor and activated fibers or to a different number of attached cross-bridges in rigor and activated fibers and nonlinear characteristics in rigor cross-bridges. Mass-shift measurements obtained from equatorial x-ray diffraction patterns support the latter possibility

    Weakly attached cross-bridges in relaxed frog muscle fibers.

    Get PDF
    Tension responses due to small, rapid length changes (completed within 40 microseconds) were obtained from skinned single frog muscle fiber segments (4-10 mm length) incubated in relaxing and rigor solutions at various ionic strengths. The first 2 ms of these responses can be described with a linear model in which the fiber is regarded as a rod, composed of infinitesimally small, identical segments, containing one undamped elastic element and two or three damped elastic elements and a mass in series. Rigor stiffness changed less than 10% in a limited range, 40-160 mM, of ionic strength conditions. Equatorial x-ray diffraction patterns show a similar finding for the filament spacing and intensity ratio I(11)/I(10). Relaxed fibers became stiffer under low ionic strength conditions. This stiffness increment can be correlated with a decreasing filament spacing and (an increased number of) weakly attached cross-bridges. Under low ionic strength conditions an additional recovery (1 ms time constant) became noticeable which might reflect characteristics of weakly attached cross-bridges

    Simultaneous Detection of Entamoeba histolytica, Giardia lamblia, and Cryptosporidium parvum in Fecal Samples by Using Multiplex Real-Time PCR

    No full text
    Entamoeba histolytica, Giardia lamblia, and Cryptosporidium are three of the most important diarrhea-causing parasitic protozoa. For many years, microscopic examination of stool samples has been considered to be the “gold standard” for diagnosis of E. histolytica, G. lamblia, and C. parvum infections. Recently, more specific and sensitive alternative methods (PCR, enzyme-linked immunosorbent assay, and direct fluorescent-antibody assay) have been introduced for all three of these parasitic infections. However, the incorporation in a routine diagnostic laboratory of these parasite-specific methods for diagnosis of each of the respective infections is time-consuming and increases the costs of a stool examination. Therefore, a multiplex real-time PCR assay was developed for the simultaneous detection of E. histolytica, G. lamblia, and C. parvum in stool samples. The multiplex PCR also included an internal control to determine efficiency of the PCR and detect inhibition in the sample. The assay was performed on species-specific DNA controls and a range of well-defined stool samples, and it achieved 100 percent specificity and sensitivity. The use of this assay in a diagnostic laboratory would provide sensitive and specific diagnosis of the main parasitic diarrheal infections and could improve patient management and infection control
    corecore