978 research outputs found

    First results on a process-oriented rain area classification technique using Meteosat Second Generation SEVIRI nighttime data

    Get PDF
    A new technique for process-oriented rain area classification using Meteosat Second Generation SEVIRI nighttime data is introduced. It is based on a combination of the Advective Convective Technique (ACT) which focuses on precipitation areas connected to convective processes and the Rain Area Delineation Scheme during Nighttime (RADS-N) a new technique for the improved detection of stratiform precipitation areas (e.g. in connection with mid-latitude frontal systems). The ACT which uses positive brightness temperature differences between the water vapour (WV) and the infrared (IR) channels (ΔT<sub>WV-IR</sub>) for the detection of convective clouds and connected precipitating clouds has been transferred from Meteosat First Generation (MFG) Metesoat Visible and Infra-Red Imager radiometer (MVIRI) to Meteosat Second Generation (MSG) Spinning Enhanced Visible and InfraRed Imager (SEVIRI). RADS-N is based on the new conceptual model that precipitating cloud areas are characterised by a large cloud water path (<i>cwp</i>) and the presence of ice particles in the upper part of the cloud. The technique considers information about both parameters inherent in the channel differences ΔT<sub>3.9-10.8</sub>, ΔT<sub>3.9-7.3</sub>, ΔT<sub>8.7-10.8</sub>, and ΔT<sub>10.8-12.1</sub>, to detect potentially precipitating cloud areas. All four channel differences are used to gain implicit knowledge about the <i>cwp</i>. ΔT<sub>8.7-10.8</sub> and ΔT<sub>10.8-12.1</sub> are additionally considered to gain information about the cloud phase. First results of a comparison study between the classified rain areas and corresponding ground based radar data for precipitation events in connection with a cold front occlusion show encouraging performance of the new proposed process-oriented rain area classification scheme

    Discriminating raining from non-raining clouds at mid-latitudes using Meteosat Second Generation daytime data

    Get PDF
    International audienceA new method for the delineation of precipitation during daytime using multispectral satellite data is proposed. The approach is not only applicable to the detection of mainly convective precipitation by means of the commonly used relation between infrared cloud top temperature and rainfall probability but enables also the detection of stratiform precipitation (e.g. in connection with mid-latitude frontal systems). The presented scheme is based on the conceptual model that precipitating clouds are characterized by a combination of particles large enough to fall, an adequate vertical extension (both represented by the cloud water path (cwp)), and the existence of ice particles in the upper part of the cloud. The technique considers the VIS0.6 and the NIR1.6 channel to gain information about the cloud water path. Additionally, the channel differences ?T8.7-10.8 and ?T10.8-12.1 are considered to supply information about the cloud phase. Rain area delineation is realized by using a minimum threshold of the rainfall confidence. To obtain a statistical transfer function between the rainfall confidence and the channel differences, the value combination of the four variables is compared to ground based radar data. The retrieval is validated against independent radar data not used for deriving the transfer function and shows an encouraging performance as well as clear improvements compared to existing optical retrieval techniques using only IR thresholds for cloud top temperature

    PT-Symmetric Electronics

    Full text link
    We show both theoretically and experimentally that a pair of inductively coupled active LRC circuits (dimer), one with amplification and another with an equivalent amount of attenuation, display all the features which characterize a wide class of non-Hermitian systems which commute with the joint parity-time PT operator: typical normal modes, temporal evolution, and scattering processes. Utilizing a Liouvilian formulation, we can define an underlying PT-symmetric Hamiltonian, which provides important insight for understanding the behavior of the system. When the PT-dimer is coupled to transmission lines, the resulting scattering signal reveals novel features which reflect the PT-symmetry of the scattering target. Specifically we show that the device can show two different behaviors simultaneously, an amplifier or an absorber, depending on the direction and phase relation of the interrogating waves. Having an exact theory, and due to its relative experimental simplicity, PT-symmetric electronics offers new insights into the properties of PT-symmetric systems which are at the forefront of the research in mathematical physics and related fields.Comment: 17 pages, 7 figure

    ERK1 as a therapeutic target for dendritic cell vaccination against high-grade gliomas

    Get PDF
    Glioma regression requires the recruitment of potent anti-tumor immune cells into the tumor microenvironment. Dendritic cells (DCs) play a role in immune responses to these tumors. The fact that DC vaccines do not effectively combat high-grade gliomas, however, suggests that DCs need to be genetically modified especially to promote their migration to tumor relevant sites. Previously, we identified extracellular signal-regulated kinase (ERK1) as a regulator of DC immunogenicity and brain autoimmunity. In the present study, we made use of modern magnetic resonance methods to study the role of ERK1 in regulating DC migration and tumor progression in a model of high-grade glioma. We found that ERK1-deficient mice are more resistant to the development of gliomas, and tumor growth in these mice is accompanied by a higher infiltration of leukocytes. ERK1-deficient DCs exhibit an increase in migration that is associated with sustained Cdc42 activation and increased expression of actin-associated cytoskeleton-organizing proteins. We also demonstrated that ERK1 deletion potentiates DC vaccination and provides a survival advantage in high-grade gliomas. Considering the therapeutic significance of these results, we propose ERK1-deleted DC vaccines as an additional means of eradicating resilient tumor cells and preventing tumor recurrence

    Electrical manipulation of spin states in a single electrostatically gated transition-metal complex

    Get PDF
    We demonstrate an electrically controlled high-spin (S=5/2) to low-spin (S=1/2) transition in a three-terminal device incorporating a single Mn2+ ion coordinated by two terpyridine ligands. By adjusting the gate-voltage we reduce the terpyridine moiety and thereby strengthen the ligand-field on the Mn-atom. Adding a single electron thus stabilizes the low-spin configuration and the corresponding sequential tunnelling current is suppressed by spin-blockade. From low-temperature inelastic cotunneling spectroscopy, we infer the magnetic excitation spectrum of the molecule and uncover also a strongly gate-dependent singlet-triplet splitting on the low-spin side. The measured bias-spectroscopy is shown to be consistent with an exact diagonalization of the Mn-complex, and an interpretation of the data is given in terms of a simplified effective model.Comment: Will appear soon in Nanoletter

    Structure formation in active networks

    Full text link
    Structure formation and constant reorganization of the actin cytoskeleton are key requirements for the function of living cells. Here we show that a minimal reconstituted system consisting of actin filaments, crosslinking molecules and molecular-motor filaments exhibits a generic mechanism of structure formation, characterized by a broad distribution of cluster sizes. We demonstrate that the growth of the structures depends on the intricate balance between crosslinker-induced stabilization and simultaneous destabilization by molecular motors, a mechanism analogous to nucleation and growth in passive systems. We also show that the intricate interplay between force generation, coarsening and connectivity is responsible for the highly dynamic process of structure formation in this heterogeneous active gel, and that these competing mechanisms result in anomalous transport, reminiscent of intracellular dynamics

    Regulatory T cells ameliorate intrauterine growth retardation in a transgenic rat model for preeclampsia

    Get PDF
    Preeclampsia is a multisystemic syndrome during pregnancy that is often associated with intrauterine growth retardation. Immunologic dysregulation, involving T cells, is implicated in the pathogenesis. The aim of this study was to evaluate the effect of upregulating regulatory T cells in an established transgenic rat model for preeclampsia. Application of superagonistic monoclonal antibody for CD28 has been shown to effectively upregulate regulatory T cells. In the first protocol (treatment protocol), we applied 1 mg of CD28 superagonist or control antibody on days 11 and 15 of pregnancy. In the second protocol (prevention protocol), the superagonist or control antibody was applied on days 1, 5, and 9. Superagonist increased regulatory T cells in circulation and placenta from 8.49+/-2.09% of CD4-positive T cells to 23.50+/-3.05% and from 3.85+/-1.45% to 23.27+/-7.64%, respectively. Blood pressure and albuminuria (30.6+/-15.1 versus 14.6+/-5.5 mg/d) were similar in the superagonist or control antibody-treated preeclamptic group for both protocols. Rats treated with CD28 superagonist showed increased pup weights in the prevention protocol (2.66+/-0.03 versus 2.37+/-0.05 g) and in the treatment protocol (3.04+/-0.04 versus 2.54+/-0.1 g). Intrauterine growth retardation, calculated by brain:liver weight ratio, was also decreased by the superagonist in both protocols. Further analysis of brain development revealed a 20% increase in brain volume by the superagonist. Induction of regulatory T cells in the circulation and the uteroplacental unit in an established preeclamptic rat model had no influence on maternal hypertension and proteinuria. However, it substantially improved fetal outcome by ameliorating intrauterine growth retardation
    corecore