71 research outputs found

    Evidence of large anisotropy in the magnetization of Na0.35CoO2.1.3H2O quasi-single-crystal superconductors

    Full text link
    Quasi-single crystals (up to 2x2x1 mm3) of Na0.35CoO2.1.3H2O-superconductor have been grown. Magnetization M(H, T) and M(T, H) curves with magnetic field approximately parallel and perpendicular to c-axis indicates on large anisotropy, comparable with Bi-based high-temperature superconducting (HTS) phases.Comment: 14 pages, 4 figure

    Magnetization measurements on Li2Pd3B superconductor

    Get PDF
    Magnetization in DC magnetic fields and at different temperatures have been measured on the Li2Pd3B compound. This material was recently found to show superconductivity at 7-8K. Critical fields Hc1(0) and Hc2(0) have been determined to be 135Oe and 4T, respectively. Critical current density, scaling of the pinning force within the Kramer model and the irreversibility field data are presented. Several superconductivity parameters were deduced: x(csi)=9.1 nm, l(lamda)=194nm and k=21. The material resembles other boride superconductors from the investigated points of view.Comment: 10 pages, 5 figure

    Temperature Dependent Polarized XANES Spectra for Zn-doped LSCO system

    Full text link
    The cuprates seem to exhibit statistics, dimensionality and phase transitions in novel ways. The nature of excitations [i.e. quasiparticle or collective], spin-charge separation, stripes [static and dynamics], inhomogeneities, psuedogap, effect of impurity dopings [e.g. Zn, Ni] and any other phenomenon in these materials must be consistently understood. Zn-doped LSCO single crystal were grown by TSFZ technique. Temperature dependent Polarized XANES [near edge local structure] spectra were measured at the BL13-B1 [Photon Factory] in the Flourescence mode from 10 K to 300 K. Since both stripes and nonmagnetic Zn impurities substituted for Cu give rise to inhomogeneous charge and spin distribution it is interesting to understand the interplay of Zn impurities and stripes. To understand these points we have used Zn-doping and some of the results obtained are as follows: The spectra show a strong dependence with respect to the polarization angle, θ\theta, as is evident at any temperature by comparing the spectra where the electric field vector is parallel with ab-plane to the one where it is parallel to the c-axis. By using the XANES [temperature] difference spectra we have determined T* [experimentally we find, T* \approx 160-170 K] for this sample. The XANES difference spectra shows that the changes in XANES features are larger in the ab-plane than the c-axis, this trend is expected since zinc is doped in the ab-plane at the copper site. Our study also complements the results in literature namely that zinc doping does not affect the c-axis transport.Comment: To appear in Physica C [ISS2001 Special Issue], related talk presented at ISS2001 as PC-16, 10 pages revtex and 7 pages of figures (pdf

    Enhancement of the superconducting transition temperature from the competition between electron-electron correlations and electron-phonon interactions

    Full text link
    We uncover that the competition between electron-electron correlations and electron-phonon interactions gives rise to unexpectedly huge enhancement of the superconducting transition temperature, several hundreds percent larger (\geq 200 K) than that of the case when only one of the two is taken into account (\sim 30 K). Our renormalization group analysis claims that this mechanism for the enhancement of the critical temperature is not limited on superconductivity but applied to various Fermi surface instabilities, proposing an underlying universal structure, which turns out to be essentially identical to that of a recent study [Phys. Rev. Lett. {\bf 108}, 046601 (2012)] on the enhancement of the Kondo temperature in the presence of Rashba spin-orbit interactions. We also discuss the stability of superconductivity against nonmagnetic randomness
    corecore