17,762 research outputs found

    Unified Brane Gravity: Cosmological Dark Matter from Scale Dependent Newton Constant

    Full text link
    We analyze, within the framework of unified brane gravity, the weak-field perturbations caused by the presence of matter on a 3-brane. Although deviating from the Randall-Sundrum approach, the masslessness of the graviton is still preserved. In particular, the four-dimensional Newton force law is recovered, but serendipitously, the corresponding Newton constant is shown to be necessarily lower than the one which governs FRW cosmology. This has the potential to puzzle out cosmological dark matter. A subsequent conjecture concerning galactic dark matter follows.Comment: 6 pages, to be published in Phys. Rev.

    Cation Exchange Capacity of the Clay Fraction of Loess in Southwestern Iowa

    Get PDF
    The cation exchange capacity of clay-size material extracted from soil with a low organic matter content is largely dependent on the kinds of clay minerals present. If the extracted clay is composed mostly of one kind of clay mineral, the exchange capacity will indicate what that mineral is. This paper reports on cation exchange capacity determinations made on the minus 2 micron clay-size range of selected samples of loess from the southwestern Iowa area

    Regional body composition in college-aged Caucasians from anthropometric measures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantitating fat and lean tissue in isolated body regions may be helpful or required in obesity and health-outcomes research. However, current methods of regional body composition measurement require specialized, expensive equipment such as that used in computed tomography or dual energy x-ray absorptiometry (DEXA). Simple body size or circumference measurement relationships to body composition have been developed but are limited to whole-body applications. We investigated relationships between body size measurements and regional body composition.</p> <p>Methods</p> <p>Using DEXA technology we determined the fat and lean tissue composition for six regions of the body in predominantly Caucasian, college-aged men (n = 32) and women (n = 67). Circumference measurements as well as body weight and height were taken for each individual. Equations relating body measurements to a respective regional fat and lean mass were developed using multiple regression analysis.</p> <p>Results</p> <p>Multiple regression R<sup>2 </sup>values ranged from 0.4451 to 0.8953 and 0.1697 to 0.7039 for regional fat and lean mass relationships to body measurements, respectively.</p> <p>Conclusion</p> <p>The equations developed in this study offer a simple way of estimating regional body composition in a college-aged adult population. The parameters used in the equations are common body measurements that can be obtained with the use of a measuring tape and weight scale.</p

    Collisional decay of a strongly driven Bose-Einstein condensate

    Full text link
    We study the collisional decay of a strongly driven Bose-Einstein condensate oscillating between two momentum modes. The resulting products of the decay are found to strongly deviate from the usual s-wave halo. Using a stochastically seeded classical field method we simulate the collisional manifold. These results are also explained by a model of colliding Bloch states.Comment: 4 pages, 4 figure

    Two-way coupling of FENE dumbbells with a turbulent shear flow

    Full text link
    We present numerical studies for finitely extensible nonlinear elastic (FENE) dumbbells which are dispersed in a turbulent plane shear flow at moderate Reynolds number. The polymer ensemble is described on the mesoscopic level by a set of stochastic ordinary differential equations with Brownian noise. The dynamics of the Newtonian solvent is determined by the Navier-Stokes equations. Momentum transfer of the dumbbells with the solvent is implemented by an additional volume forcing term in the Navier-Stokes equations, such that both components of the resulting viscoelastic fluid are connected by a two-way coupling. The dynamics of the dumbbells is given then by Newton's second law of motion including small inertia effects. We investigate the dynamics of the flow for different degrees of dumbbell elasticity and inertia, as given by Weissenberg and Stokes numbers, respectively. For the parameters accessible in our study, the magnitude of the feedback of the polymers on the macroscopic properties of turbulence remains small as quantified by the global energy budget and the Reynolds stresses. A reduction of the turbulent drag by up to 20% is observed for the larger particle inertia. The angular statistics of the dumbbells shows an increasing alignment with the mean flow direction for both, increasing elasticity and inertia. This goes in line with a growing asymmetry of the probability density function of the transverse derivative of the streamwise turbulent velocity component. We find that dumbbells get stretched referentially in regions where vortex stretching or bi-axial strain dominate the local dynamics and topology of the velocity gradient tensor.Comment: 20 pages, 10 Postscript figures (Figures 5 and 10 in reduced quality

    Topology and Phases in Fermionic Systems

    Full text link
    There can exist topological obstructions to continuously deforming a gapped Hamiltonian for free fermions into a trivial form without closing the gap. These topological obstructions are closely related to obstructions to the existence of exponentially localized Wannier functions. We show that by taking two copies of a gapped, free fermionic system with complex conjugate Hamiltonians, it is always possible to overcome these obstructions. This allows us to write the ground state in matrix product form using Grassman-valued bond variables, and show insensitivity of the ground state density matrix to boundary conditions.Comment: 4 pages, see also arxiv:0710.329

    Damping of bulk excitations over an elongated BEC - the role of radial modes

    Full text link
    We report the measurement of Beliaev damping of bulk excitations in cigar shaped Bose Einstein condensates of atomic vapor. By using post selection, excitation line shapes of the total population are compared with those of the undamped excitations. We find that the damping depends on the initial excitation energy of the decaying quasi particle, as well as on the excitation momentum. We model the condensate as an infinite cylinder and calculate the damping rates of the different radial modes. The derived damping rates are in good agreement with the experimentally measured ones. The damping rates strongly depend on the destructive interference between pathways for damping, due to the quantum many-body nature of both excitation and damping products.Comment: 5 pages, 4 figure

    Dynamics of cosmic strings and springs; a covariant formulation

    Full text link
    A general family of charge-current carrying cosmic string models is investigated. In the special case of circular configurations in arbitrary axially symmetric gravitational and electromagnetic backgrounds the dynamics is determined by simple point particle Hamiltonians. A certain "duality" transformation relates our results to previous ones, obtained by Carter et. al., for an infinitely long open stationary string in an arbitrary stationary background.Comment: 11 pages, Latex, Nordita preprint 93/28

    On rigidly rotating perfect fluid cylinders

    Full text link
    The gravitational field of a rigidly rotating perfect fluid cylinder with gamma- law equation of state is found analytically. The solution has two parameters and is physically realistic for gamma in the interval (1.41,2]. Closed timelike curves always appear at large distances.Comment: 10 pages, Revtex (galley

    Locally Optimally Emitting Clouds and the Origin of Quasar Emission Lines

    Get PDF
    The similarity of quasar line spectra has been taken as an indication that the emission line clouds have preferred parameters, suggesting that the environment is subject to a fine tuning process. We show here that the observed spectrum is a natural consequence of powerful selection effects. We computed a large grid of photoionization models covering the widest possible range of cloud gas density and distance from the central continuum source. For each line only a narrow range of density and distance from the continuum source results in maximum reprocessing efficiency, corresponding to ``locally optimally-emitting clouds'' (LOC). These parameters depend on the ionization and excitation potentials of the line, and its thermalization density. The mean QSO line spectrum can be reproduced by simply adding together the full family of clouds, with an appropriate covering fraction distribution. The observed quasar spectrum is a natural consequence of the ability of various clouds to reprocess the underlying continuum, and can arise in a chaotic environment with no preferred pressure, gas density, or ionization parameter.Comment: 9 pages including 1 ps figure. LaTeX format using aaspp4.st
    • …
    corecore