1,618 research outputs found
Maximizing phonon thermal conductance for ballistic membranes
At low temperatures, phonon scattering can become so weak that phonon
transport becomes ballistic. We calculate the ballistic phonon conductance G
for membranes using elasticity theory, considering the transition from three to
two dimensions. We discuss the temperature and thickness dependence and
especially concentrate on the issue of material parameters. For all membrane
thicknesses, the best conductors have, counter-intuitively, the lowest speed of
sound.Comment: 4 pages, 4 figures, proceedings to phonons 2007 conferenc
Interaction of Lamb modes with two-level systems in amorphous nanoscopic membranes
Using a generalized model of interaction between a two-level system (TLS) and
an arbitrary deformation of the material, we calculate the interaction of Lamb
modes with TLSs in amorphous nanoscopic membranes. We compare the mean free
paths of the Lamb modes with different symmetries and calculate the heat
conductivity . In the limit of an infinitely wide membrane, the heat
conductivity is divergent. Nevertheless, the finite size of the membrane
imposes a lower cut-off for the phonons frequencies, which leads to the
temperature dependence . This temperature dependence
is a hallmark of the TLS-limited heat conductance at low temperature.Comment: 9 pages, 2 figure
Quantization of the elastic modes in an isotropic plate
We quantize the elastic modes in a plate. For this, we find a complete,
orthogonal set of eigenfunctions of the elastic equations and we normalize
them. These are the phonon modes in the plate and their specific forms and
dispersion relations are manifested in low temperature experiments in
ultra-thin membranes.Comment: 14 pages, 2 figure
Efficient cosmological parameter sampling using sparse grids
We present a novel method to significantly speed up cosmological parameter
sampling. The method relies on constructing an interpolation of the
CMB-log-likelihood based on sparse grids, which is used as a shortcut for the
likelihood-evaluation. We obtain excellent results over a large region in
parameter space, comprising about 25 log-likelihoods around the peak, and we
reproduce the one-dimensional projections of the likelihood almost perfectly.
In speed and accuracy, our technique is competitive to existing approaches to
accelerate parameter estimation based on polynomial interpolation or neural
networks, while having some advantages over them. In our method, there is no
danger of creating unphysical wiggles as it can be the case for polynomial fits
of a high degree. Furthermore, we do not require a long training time as for
neural networks, but the construction of the interpolation is determined by the
time it takes to evaluate the likelihood at the sampling points, which can be
parallelised to an arbitrary degree. Our approach is completely general, and it
can adaptively exploit the properties of the underlying function. We can thus
apply it to any problem where an accurate interpolation of a function is
needed.Comment: Submitted to MNRAS, 13 pages, 13 figure
{\sc CosmoNet}: fast cosmological parameter estimation in non-flat models using neural networks
We present a further development of a method for accelerating the calculation
of CMB power spectra, matter power spectra and likelihood functions for use in
cosmological Bayesian inference. The algorithm, called {\sc CosmoNet}, is based
on training a multilayer perceptron neural network. We compute CMB power
spectra (up to ) and matter transfer functions over a hypercube in
parameter space encompassing the confidence region of a selection of
CMB (WMAP + high resolution experiments) and large scale structure surveys (2dF
and SDSS). We work in the framework of a generic 7 parameter non-flat
cosmology. Additionally we use {\sc CosmoNet} to compute the WMAP 3-year, 2dF
and SDSS likelihoods over the same region. We find that the average error in
the power spectra is typically well below cosmic variance for spectra, and
experimental likelihoods calculated to within a fraction of a log unit. We
demonstrate that marginalised posteriors generated with {\sc CosmoNet} spectra
agree to within a few percent of those generated by {\sc CAMB} parallelised
over 4 CPUs, but are obtained 2-3 times faster on just a \emph{single}
processor. Furthermore posteriors generated directly via {\sc CosmoNet}
likelihoods can be obtained in less than 30 minutes on a single processor,
corresponding to a speed up of a factor of . We also demonstrate the
capabilities of {\sc CosmoNet} by extending the CMB power spectra and matter
transfer function training to a more generic 10 parameter cosmological model,
including tensor modes, a varying equation of state of dark energy and massive
neutrinos. {\sc CosmoNet} and interfaces to both {\sc CosmoMC} and {\sc
Bayesys} are publically available at {\tt
www.mrao.cam.ac.uk/software/cosmonet}.Comment: 8 pages, submitted to MNRA
Heat transport in ultra-thin dielectric membranes and bridges
Phonon modes and their dispersion relations in ultrathin homogenous
dielectric membranes are calculated using elasticity theory. The approach
differs from the previous ones by a rigorous account of the effect of the film
surfaces on the modes with different polarizations. We compute the heat
capacity of membranes and the heat conductivity of narrow bridges cut out of
such membranes, in a temperature range where the dimensions have a strong
influence on the results. In the high temperature regime we recover the
three-dimensional bulk results. However, in the low temperature limit the heat
capacity, , is proportional with (temperature), while the heat
conductivity, , of narrow bridges is proportional to , leading
to a thermal cut-off frequency .Comment: 6 pages and 6 figure
Estimation of Primordial Spectrum with post-WMAP 3 year data
In this paper we implement an improved (error sensitive) Richardson-Lucy
deconvolution algorithm on the measured angular power spectrum from the WMAP 3
year data to determine the primordial power spectrum assuming different points
in the cosmological parameter space for a flat LCDM cosmological model. We also
present the preliminary results of the cosmological parameter estimation by
assuming a free form of the primordial spectrum, for a reasonably large volume
of the parameter space. The recovered spectrum for a considerably large number
of the points in the cosmological parameter space has a likelihood far better
than a `best fit' power law spectrum up to \Delta \chi^2_{eff} \approx -30. We
use Discrete Wavelet Transform (DWT) for smoothing the raw recovered spectrum
from the binned data. The results obtained here reconfirm and sharpen the
conclusion drawn from our previous analysis of the WMAP 1st year data. A sharp
cut off around the horizon scale and a bump after the horizon scale seem to be
a common feature for all of these reconstructed primordial spectra. We have
shown that although the WMAP 3 year data prefers a lower value of matter
density for a power law form of the primordial spectrum, for a free form of the
spectrum, we can get a very good likelihood to the data for higher values of
matter density. We have also shown that even a flat CDM model, allowing a free
form of the primordial spectrum, can give a very high likelihood fit to the
data. Theoretical interpretation of the results is open to the cosmology
community. However, this work provides strong evidence that the data retains
discriminatory power in the cosmological parameter space even when there is
full freedom in choosing the primordial spectrum.Comment: 13 pages, 4 figures, uses Revtex4, new analysis and results,
references added, matches version accepted to Phys. Rev.
Scattering loss in electro-optic particulate composite materials
The effective permittivity dyadic of a composite material containing
particulate constituent materials with one constituent having the ability to
display the Pockels effect is computed, using an extended version of the
strong-permittivity-fluctuation theory which takes account of both the
distributional statistics of the constituent particles and their sizes.
Scattering loss, thereby incorporated in the effective electromagnetic response
of the homogenized composite material, is significantly affected by the
application of a low-frequency (dc) electric field
A numerical investigation of a piezoelectric surface acoustic wave interaction with a one-dimensional channel
We investigate the propagation of a piezoelectric surface acoustic wave (SAW)
across a GaAs/AlGaAs heterostructure surface, on which there is
fixed a metallic split-gate. Our method is based on a finite element
formulation of the underlying equations of motion, and is performed in
three-dimensions fully incorporating the geometry and material composition of
the substrate and gates. We demonstrate attenuation of the SAW amplitude as a
result of the presence of both mechanical and electrical gates on the surface.
We show that the incorporation of a simple model for the screening by the
two-dimensional electron gas (2DEG), results in a total electric potential
modulation that suggests a mechanism for the capture and release of electrons
by the SAW. Our simulations suggest the absence of any significant turbulence
in the SAW motion which could hamper the operation of SAW based quantum devices
of a more complex geometry.Comment: 8 pages, 8 figure
- …
