1,571 research outputs found
Long-Period Building Response to Earthquakes in the San Francisco Bay Area
This article reports a study of modeled, long-period building responses to ground-motion simulations of earthquakes in the San Francisco Bay Area. The earthquakes include the 1989 magnitude 6.9 Loma Prieta earthquake, a magnitude 7.8 simulation of the 1906 San Francisco earthquake, and two hypothetical magnitude 7.8 northern San Andreas fault earthquakes with hypocenters north and south of San Francisco. We use the simulated ground motions to excite nonlinear models of 20-story, steel, welded moment-resisting frame (MRF) buildings. We consider MRF buildings designed with two different strengths and modeled with either ductile or brittle welds. Using peak interstory drift ratio (IDR) as a performance measure, the stiffer, higher strength building models outperform the equivalent more flexible, lower strength designs. The hypothetical magnitude 7.8 earthquake with hypocenter north of San Francisco produces the most severe ground motions. In this simulation, the responses of the more flexible, lower strength building model with brittle welds exceed an IDR of 2.5% (that is, threaten life safety) on 54% of the urban area, compared to 4.6% of the urban area for the stiffer, higher strength building with ductile welds. We also use the simulated ground motions to predict the maximum isolator displacement of base-isolated buildings with linear, single-degree-of-freedom (SDOF) models. For two existing 3-sec isolator systems near San Francisco, the design maximum displacement is 0.5 m, and our simulations predict isolator displacements for this type of system in excess of 0.5 m in many urban areas. This article demonstrates that a large, 1906-like earthquake could cause significant damage to long-period buildings in the San Francisco Bay Area
Constraining fault constitutive behavior with slip and stress heterogeneity
We study how enforcing self-consistency in the statistical properties of the preshear and postshear stress on a fault can be used to constrain fault constitutive behavior beyond that required to produce a desired spatial and temporal evolution of slip in a single event. We explore features of rupture dynamics that (1) lead to slip heterogeneity in earthquake ruptures and (2) maintain these conditions following rupture, so that the stress field is compatible with the generation of aftershocks and facilitates heterogeneous slip in subsequent events. Our three-dimensional finite element simulations of magnitude 7 events on a vertical, planar strike-slip fault show that the conditions that lead to slip heterogeneity remain in place after large events when the dynamic stress drop (initial shear stress) and breakdown work (fracture energy) are spatially heterogeneous. In these models the breakdown work is on the order of MJ/m^2, which is comparable to the radiated energy. These conditions producing slip heterogeneity also tend to produce narrower slip pulses independent of a slip rate dependence in the fault constitutive model. An alternative mechanism for generating these confined slip pulses appears to be fault constitutive models that have a stronger rate dependence, which also makes them difficult to implement in numerical models. We hypothesize that self-consistent ruptures could also be produced by very narrow slip pulses propagating in a self-sustaining heterogeneous stress field with breakdown work comparable to fracture energy estimates of kJ/M^2
Near-Source Ground Motions from Simulations of Sustained Intersonic and Supersonic Fault Ruptures
We examine the long-period near-source ground motions from simulations of M 7.4 events on a strike-slip fault using kinematic ruptures with rupture speeds that range from subshear speeds through intersonic speeds to supersonic speeds. The strong along-strike shear-wave directivity present in scenarios with subshear rupture speeds disappears in the scenarios with ruptures propagating faster than the shear-wave speed. Furthermore, the maximum horizontal displacements and velocities rotate from generally fault-perpendicular orientations at subshear rupture speeds to generally fault-parallel orientations at supersonic rupture speeds. For rupture speeds just above the shear-wave speed, the orientations are spatially heterogeneous as a result of the random nature of our assumed slip model. At locations within a few kilometers of the rupture, the time histories of the polarization of the horizontal motion provide a better diagnostic with which to gauge the rupture speed than the orientation of the peak motion. Subshear ruptures are associated with significant fault-perpendicular motion before fault-parallel motion close to the fault; supershear ruptures are associated with fault-perpendicular motion after significant fault-parallel motion. Consistent with previous studies, we do not find evidence for prolonged supershear rupture in the long-period (>2 sec) ground motions from the 1979 Imperial Valley earthquake. However, we are unable to resolve the issue of whether a limited portion of the rupture (approximately 10 km in length) propagated faster than the shear-wave speed. Additionally, a recording from the 2002 Denali fault earthquake does appear to be qualitatively consistent with locally supershear rupture. Stronger evidence for supershear rupture in earthquakes may require very dense station coverage in order to capture these potentially distinguishing traits
Dynamic Rupture Modeling of the Transition from Thrust to Strike-Slip Motion in the 2002 Denali Fault Earthquake, Alaska
We use three-dimensional dynamic (spontaneous) rupture models to investigate the nearly simultaneous ruptures of the Susitna Glacier thrust fault and the Denali strike-slip fault. With the 1957 M_w 8.3 Gobi-Altay, Mongolia, earthquake as the only other well-documented case of significant, nearly simultaneous rupture of both thrust and strike-slip faults, this feature of the 2002 Denali fault earthquake provides a unique opportunity to investigate the mechanisms responsible for development of these large, complex events. We find that the geometry of the faults and the orientation of the regional stress field caused slip on the Susitna Glacier fault to load the Denali fault. Several different stress orientations with oblique right-lateral motion on the Susitna Glacier fault replicate the triggering of rupture on the Denali fault about 10 sec after the rupture nucleates on the Susitna Glacier fault. However, generating slip directions compatible with measured surface offsets and kinematic source inversions requires perturbing the stress orientation from that determined with focal mechanisms of regional events. Adjusting the vertical component of the principal stress tensor for the regional stress field so that it is more consistent with a mixture of strike-slip and reverse faulting significantly improves the fit of the slip-rake angles to the data. Rotating the maximum horizontal compressive stress direction westward appears to improve the fit even further
Effects of Fault Dip and Slip Rake Angles on Near-Source Ground Motions: Why Rupture Directivity Was Minimal in the 1999 Chi-Chi, Taiwan, Earthquake
We study how the fault dip and slip rake angles affect near-source ground velocities and displacements as faulting transitions from strike-slip motion on a vertical fault to thrust motion on a shallow-dipping fault. Ground motions are computed for five fault geometries with different combinations of fault dip and rake angles and common values for the fault area and the average slip. The nature of the shear-wave directivity is the key factor in determining the size and distribution of the peak velocities and displacements. Strong shear-wave directivity requires that (1) the observer is located in the direction of rupture propagation and (2) the rupture propagates parallel to the direction of the fault slip vector. We show that predominantly along-strike rupture of a thrust fault (geometry similar in the Chi-Chi earthquake) minimizes the area subjected to large-amplitude velocity pulses associated with rupture directivity, because the rupture propagates perpendicular to the slip vector; that is, the rupture propagates in the direction of a node in the shear-wave radiation pattern. In our simulations with a shallow hypocenter, the maximum peak-to-peak horizontal velocities exceed 1.5 m/sec over an area of only 200 km^2 for the 30°-dipping fault (geometry similar to the Chi-Chi earthquake), whereas for the 60°- and 75°-dipping faults this velocity is exceeded over an area of 2700 km^2. These simulations indicate that the area subjected to large-amplitude long-period ground motions would be larger for events of the same size as Chi-Chi that have different styles of faulting or a deeper hypocenter
Dynamic Earthquake Ruptures in the Presence of Lithostatic Normal Stresses: Implications for Friction Models and Heat Production
We simulate dynamic ruptures on a strike-slip fault in homogeneous and layered half-spaces and on a thrust fault in a layered half-space. With traditional friction models, sliding friction exceeds 50% of the fault normal compressive stress, and unless the pore pressures approach the lithostatic stress, the rupture characteristics depend strongly on the depth, and sliding generates large amounts of heat. Under application of reasonable stress distributions with depth, variation of the effective coefficient of friction with the square root of the shear modulus and the inverse of the depth creates distributions of stress drop and fracture energy that produce realistic rupture behavior. This ad hoc friction model results in (1) low-sliding friction at all depths and (2) fracture energy that is relatively independent of depth. Additionally, friction models with rate-weakening behavior (which form pulselike ruptures) appear to generate heterogeneity in the distributions of final slip and shear stress more effectively than those without such behavior (which form cracklike ruptures). For surface rupture on a thrust fault, the simple slip-weakening friction model, which lacks rate-weakening behavior, accentuates the dynamic interactions between the seismic waves and the rupture and leads to excessively large ground motions on the hanging wall. Waveforms below the center of the fault (which are associated with waves radiated to teleseismic distances) indicate that source inversions of thrust events may slightly underestimate the slip at shallow depths
Potential toxicity of some traditional leafy vegetables consumed in Nyang’oma division, western Kenya
Traditional leafy vegetables are those plants whose leaves or aerial parts have been integrated in a community’s culture for use as food over a long span of time. These vegetables are highly recommended due to their relatively high nutritional value compared to the introduced varieties, and are also important in food security. Qualitative phytochemical screening, using standard laboratory procedure, was carried out for alkaloids, saponins, cardenolides, flavonoids and polyphenols on traditional leafy vegetables consumed amongst the Luo, an agro-pastoral community living along the shores of lake Victoria, Western Kenya. The vegetables were: Amaranthus hybridus L. (subsp.hybridus), Asystasia mysorensis T. Anderson, Coccinia grandis (L) Voigt, Crotalaria ochroleuca (Kotschy) Polhill, Cucurbita maxima Duchesne ex Lam, Portulaca quadrifida L., Sesamum calycimum Welw. var. angustifolium (Oliv.) Ihlenf. and Siedenst., Senna occidentalis L. and Sida acuta Burm. F. All the vegetables were found to contain polyphenols and flavanoids while other classes of phytochemicals varied from species to species Brine shrimp lethality tests revealed that S. calycimum var. angustifolium (LC50 84.8 μg/ml), S. occidentalis (LC5099.5 μg/ml), S. acuta (LC50 99.4 μg/ml), C. grandis (LC50 100.6 μg/ml) and A. mysorensis (LC50 207.7 μg/ml) exhibited marked levels of toxicity. C. ochroleuca (Sunnhemp) contained all the five classes of phytochemicals, but proved less toxic (LC50 4511.3 μg/ml). This vegetable is highly utilized in Nyang’oma, and seventy per cent of the respondents consume this species. A. hybridus (African spinach, or Amaranth) was found to be the least toxic (LC50 6233.6 μg/ml) and this vegetable is recommended for consumption. From the results, five vegetables contain possible agents that can cause acute or chronic toxicities when consumed in large quantities or over a long period of time. Hence some vegetables should be consumed with great care. Though further studies are required to determine which of the phytochemicals are lethal to mammals.Key words: Traditional vegetables, phytochemicals, toxicity, Luo, Nyang’om
- …