4,329 research outputs found

    Modeling interaction of relativistic and nonrelativistic winds in binary system PSR 1259-63/SS2883. I.Hydrodynamical limit

    Full text link
    In this paper, we present a detailed hydrodynamical study of the properties of the flow produced by the collision of a pulsar wind with the surrounding in a binary system. This work is the first attempt to simulate interaction of the ultrarelativistic flow (pulsar wind) with the nonrelativistic stellar wind. Obtained results show that the wind collision could result in the formation of an "unclosed" (at spatial scales comparable to the binary system size) pulsar wind termination shock even when the stellar wind ram pressure exceeds significantly the pulsar wind kinetical pressure. Moreover, the post-shock flow propagates in a rather narrow region, with very high bulk Lorentz factor (γ∼100\gamma\sim100). This flow acceleration is related to adiabatical losses, which are purely hydrodynamical effects. Interestingly, in this particular case, no magnetic field is required for formation of the ultrarelativistic bulk outflow. The obtained results provide a new interpretation for the orbital variability of radio, X-ray and gamma-ray signals detected from binary pulsar system PSR 1259-63/SS2883.Comment: 11 pages, 13 figures, submitted to MNRA

    The Pulsar Wind Nebula Around PSR B1853+01 in the Supernova Remnant W44

    Get PDF
    We present radio observations of a region in the vicinity of the young pulsar PSR B1853+01 in the supernova remnant W44. The pulsar is located at the apex of an extended feature with cometary morphology. We argue on the basis of its morphology and its spectral index and polarization properties that this is a synchrotron nebula produced by the spin down energy of the pulsar. The geometry and physical parameters of this pulsar-powered nebula and W44 are used to derive three different measures of the pulsar's transverse velocity. A range of estimates between 315 and 470 km/s are derived, resulting in a typical value of 375 km/s. The observed synchrotron spectrum from radio to X-ray wavelengths is used to put constraints on the energetics of the nebula and to derive the parameters of the pulsar wind.Comment: ApJ Let (in press

    Spectra and Light Curves of GRB Afterglows

    Full text link
    We performed accurate numerical calculations of angle-, time-, and frequency-dependent radiative transfer for the relativistic motion of matter in gamma-ray burst (GRB) models. Our technique for solving the transfer equation, which is based on the method of characteristics, can be applied to the motion of matter with a Lorentz factor up to 1000. The effect of synchrotron self-absorption is taken into account. We computed the spectra and light curves from electrons with a power-law energy distribution in an expanding relativistic shock and compare them with available analytic estimates. The behavior of the optical afterglows from GRB 990510 and GRB 000301c is discussed qualitatively.Comment: 8 pages, 7 figure

    Reionization and the abundance of galactic satellites

    Full text link
    One of the main challenges facing standard hierarchical structure formation models is that the predicted abundance of galactic subhalos with circular velocities of 10-30 km/s is an order of magnitude higher than the number of satellites actually observed within the Local Group. Using a simple model for the formation and evolution of dark halos, based on the extended Press-Schechter formalism and tested against N-body results, we show that the theoretical predictions can be reconciled with observations if gas accretion in low-mass halos is suppressed after the epoch of reionization. In this picture, the observed dwarf satellites correspond to the small fraction of halos that accreted substantial amounts of gas before reionization. The photoionization mechanism naturally explains why the discrepancy between predicted halos and observed satellites sets in at about 30 km/s, and for reasonable choices of the reionization redshift (z_re = 5-12) the model can reproduce both the amplitude and shape of the observed velocity function of galactic satellites. If this explanation is correct, then typical bright galaxy halos contain many low-mass dark matter subhalos. These might be detectable through their gravitational lensing effects, through their influence on stellar disks, or as dwarf satellites with very high mass-to-light ratios. This model also predicts a diffuse stellar component produced by large numbers of tidally disrupted dwarfs, perhaps sufficient to account for most of the Milky Way's stellar halo.Comment: 5 pages, 2 figures, Submitted to Ap

    Plasma Wakefield Acceleration for Ultrahigh Energy Cosmic Rays

    Full text link
    A cosmic acceleration mechanism is introduced which is based on the wakefields excited by the Alfven shocks in a relativistically flowing plasma, where the energy gain per distance of a test particle is Lorentz invariant. We show that there exists a threshold condition for transparency below which the accelerating particle is collision-free and suffers little energy loss in the plasma medium. The stochastic encounters of the random accelerating-decelerating phases results in a power-law energy spectrum: f(e) 1/e^2. The environment suitable for such plasma wakefield acceleration can be cosmically abundant. As an example, we discuss the possible production of super-GZK ultra high energy cosmic rays (UHECR) through this mechanism in the atmosphere of gamma ray bursts. We show that the acceleration gradient can be as high as G ~ 10^16 eV/cm. The estimated event rate in our model agrees with that from UHECR observations.Comment: 11 pages, 1 figure, submitted to Phys. Rev. Let

    The Formation of the First Low-Mass Stars From Gas With Low Carbon and Oxygen Abundances

    Full text link
    The first stars in the Universe are predicted to have been much more massive than the Sun. Gravitational condensation accompanied by cooling of the primordial gas due to molecular hydrogen, yields a minimum fragmentation scale of a few hundred solar masses. Numerical simulations indicate that once a gas clump acquires this mass, it undergoes a slow, quasi-hydrostatic contraction without further fragmentation. Here we show that as soon as the primordial gas - left over from the Big Bang - is enriched by supernovae to a carbon or oxygen abundance as small as ~0.01-0.1% of that found in the Sun, cooling by singly-ionized carbon or neutral oxygen can lead to the formation of low-mass stars. This mechanism naturally accommodates the discovery of solar mass stars with unusually low (10^{-5.3} of the solar value) iron abundance but with a high (10^{-1.3} solar) carbon abundance. The minimum stellar mass at early epochs is partially regulated by the temperature of the cosmic microwave background. The derived critical abundances can be used to identify those metal-poor stars in our Milky Way galaxy with elemental patterns imprinted by the first supernovae.Comment: 14 pages, 2 figures (appeared today in Nature

    Gedanken Worlds without Higgs: QCD-Induced Electroweak Symmetry Breaking

    Full text link
    To illuminate how electroweak symmetry breaking shapes the physical world, we investigate toy models in which no Higgs fields or other constructs are introduced to induce spontaneous symmetry breaking. Two models incorporate the standard SU(3)_c x SU(2)_L x U(1)_Y gauge symmetry and fermion content similar to that of the standard model. The first class--like the standard electroweak theory--contains no bare mass terms, so the spontaneous breaking of chiral symmetry within quantum chromodynamics is the only source of electroweak symmetry breaking. The second class adds bare fermion masses sufficiently small that QCD remains the dominant source of electroweak symmetry breaking and the model can serve as a well-behaved low-energy effective field theory to energies somewhat above the hadronic scale. A third class of models is based on the left-right--symmetric SU(3)_c x SU(2)_L x SU(2)_R x U(1)_{B-L} gauge group. In a fourth class of models, built on SU(4)_{PS} x SU(2)_L x SU(2)_R gauge symmetry, lepton number is treated as a fourth color. Many interesting characteristics of the models stem from the fact that the effective strength of the weak interactions is much closer to that of the residual strong interactions than in the real world. The Higgs-free models not only provide informative contrasts to the real world, but also lead us to consider intriguing issues in the application of field theory to the real world.Comment: 20 pages, no figures, uses RevTeX; typos correcte

    5-10 GeV Neutrinos from Gamma-Ray Burst Fireballs

    Get PDF
    A gamma-ray burst fireball is likely to contain an admixture of neutrons, in addition to protons, in essentially all progenitor scenarios. Inelastic collisions between differentially streaming protons and neutrons in the fireball produce muon neutrinos (antineutrinos) of ~ 10 GeV as well as electron neutrinos (antineutrinos) of ~ 5 GeV, which could produce ~ 7 events/year in kilometer cube detectors, if the neutron abundance is comparable to that of protons. Photons of ~ 10 GeV from pi-zero decay and ~ 100 MeV electron antineutrinos from neutron decay are also produced, but will be difficult to detect. Photons with energies < 1 MeV from shocks following neutron decay produce a characteristic signal which may be distinguishable from the proton-related MeV photons.Comment: 4 pages, latex, 1 figure, aps style files. Final version, accepted in Phys.Rev.Lett., 6/22/2000; some clarifications in the text, same conclusion
    • …
    corecore