9,457 research outputs found

    Logistics hardware and services control system

    Get PDF
    Software system permits onsite direct control of logistics operations, which include spare parts, initial installation, tool control, and repairable parts status and control, through all facets of operations. System integrates logistics actions and controls receipts, issues, loans, repairs, fabrications, and modifications and assets in predicting and allocating logistics parts and services effectively

    Discovery of Pulsed X-ray Emission from the SMC Transient RX J0117.6-7330

    Get PDF
    We report on the detection of pulsed, broad-band, X-ray emission from the transient source RX J0117.6-7330. The pulse period of 22 seconds is detected by the ROSAT/PSPC instrument in a 1992 Sep 30 - Oct 2 observation and by the CGRO/BATSE instrument during the same epoch. Hard X-ray pulsations are detectable by BATSE for approximately 100 days surrounding the ROSAT observation (1992 Aug 28 - Dec 8). The total directly measured X-ray luminosity during the ROSAT observation is 1.0E38 (d/60 kpc)^2 ergs s-1. The pulse frequency increases rapidly during the outburst, with a peak spin-up rate of 1.2E-10 Hz s-1 and a total frequency change 1.8%. The pulsed percentage is 11.3% from 0.1-2.5 keV, increasing to at least 78% in the 20-70 keV band. These results establish RX J0117.6-7330 as a transient Be binary system.Comment: 17 pages, Latex, aasms, accepted for publication in ApJ Letter

    Solar Magnetic Tracking. IV. The Death of Magnetic Features

    Full text link
    The removal of magnetic flux from the quiet-sun photosphere is important for maintaining the statistical steady-state of the magnetic field there, for determining the magnetic flux budget of the Sun, and for estimating the rate of energy injected into the upper solar atmosphere. Magnetic feature death is a measurable proxy for the removal of detectable flux. We used the SWAMIS feature tracking code to understand how nearly 20000 detected magnetic features die in an hour-long sequence of Hinode/SOT/NFI magnetograms of a region of quiet Sun. Of the feature deaths that remove visible magnetic flux from the photosphere, the vast majority do so by a process that merely disperses the previously-detected flux so that it is too small and too weak to be detected. The behavior of the ensemble average of these dispersals is not consistent with a model of simple planar diffusion, suggesting that the dispersal is constrained by the evolving photospheric velocity field. We introduce the concept of the partial lifetime of magnetic features, and show that the partial lifetime due to Cancellation of magnetic flux, 22 h, is 3 times slower than previous measurements of the flux turnover time. This indicates that prior feature-based estimates of the flux replacement time may be too short, in contrast with the tendency for this quantity to decrease as resolution and instrumentation have improved. This suggests that dispersal of flux to smaller scales is more important for the replacement of magnetic fields in the quiet Sun than observed bipolar cancellation. We conclude that processes on spatial scales smaller than those visible to Hinode dominate the processes of flux emergence and cancellation, and therefore also the quantity of magnetic flux that threads the photosphere.Comment: Accepted by Ap

    Proton imaging of stochastic magnetic fields

    Full text link
    Recent laser-plasma experiments report the existence of dynamically significant magnetic fields, whose statistical characterisation is essential for understanding the physical processes these experiments are attempting to investigate. In this paper, we show how a proton imaging diagnostic can be used to determine a range of relevant magnetic field statistics, including the magnetic-energy spectrum. To achieve this goal, we explore the properties of an analytic relation between a stochastic magnetic field and the image-flux distribution created upon imaging that field. We conclude that features of the beam's final image-flux distribution often display a universal character determined by a single, field-scale dependent parameter - the contrast parameter - which quantifies the relative size of the correlation length of the stochastic field, proton displacements due to magnetic deflections, and the image magnification. For stochastic magnetic fields, we establish the existence of four contrast regimes - linear, nonlinear injective, caustic and diffusive - under which proton-flux images relate to their parent fields in a qualitatively distinct manner. As a consequence, it is demonstrated that in the linear or nonlinear injective regimes, the path-integrated magnetic field experienced by the beam can be extracted uniquely, as can the magnetic-energy spectrum under a further statistical assumption of isotropy. This is no longer the case in the caustic or diffusive regimes. We also discuss complications to the contrast-regime characterisation arising for inhomogeneous, multi-scale stochastic fields, as well as limitations currently placed by experimental capabilities on extracting magnetic field statistics. The results presented in this paper provide a comprehensive description of proton images of stochastic magnetic fields, with applications for improved analysis of given proton-flux images.Comment: Main paper pp. 1-29; appendices pp. 30-84. 24 figures, 2 table

    Very high energy gamma rays from the Crab Nebula

    Get PDF
    Observations of the Crab pulsar using the atmospheric Cerenkov technique were conducted for 22 hours. The light curve obtained shows a single peak at approximately the position of the expected main peak with a significance level of 3.2 sigma. The pulsed flux above 200 GeV is 2.5 + or - 0.8 x 10 to the 11th power cm(-2)s(-1)

    Fluvial Sinuous Ridges of the Morrison Formation, USA: Meandering, Scarp Retreat, and Implications for Mars

    Get PDF
    Sinuous ridges have been interpreted as evidence for ancient rivers on Mars, but relating ridge geometry to paleo‐hydraulics remains uncertain. Three analog ridge systems from the Morrison Formation, Utah, are composed of sandstone caprocks, up to 50 m wide and 8 m thick, atop mudstone flanks. Ridge caprocks have narrowed significantly compared to sandstone bodies preserved in outcrop, consistent with a new ridge‐erosion model that can be used to estimate original sandstone‐body extent. Ridge networks represent caprocks intersecting at distinct stratigraphic levels, rather than a preserved channel network. Caprocks are interpreted as amalgamated channel belts, rather than inverted channels, with dune and bar cross stratification that was used to reconstruct paleo‐channel dimensions. Curvilinear features on ridge tops are outcropping lateral accretion sets (LAS) from point bars and indicate meandering. We found that caprock thickness scales with paleo‐channel depth and LAS curvature scales with paleo‐channel width. Application of these relations to a ridge in Aeolis Dorsa, Mars, yielded consistent water discharge estimates (310–1,800 m³/s). In contrast, using ridge width or ridge radius of curvature as paleo‐channel proxies overestimated discharge by a factor of 30–500. In addition, the ridge‐erosion model suggests that scarp retreat may be less efficient on Mars, resulting in taller and wider ridges, with more intact caprocks. Altogether, our results support the hypothesis that ridges are exhumed channel belts and floodplain deposits implying long‐lived fluvial activity recorded within a depositional basin

    Fluvial Sinuous Ridges of the Morrison Formation, USA: Meandering, Scarp Retreat, and Implications for Mars

    Get PDF
    Sinuous ridges have been interpreted as evidence for ancient rivers on Mars, but relating ridge geometry to paleo‐hydraulics remains uncertain. Three analog ridge systems from the Morrison Formation, Utah, are composed of sandstone caprocks, up to 50 m wide and 8 m thick, atop mudstone flanks. Ridge caprocks have narrowed significantly compared to sandstone bodies preserved in outcrop, consistent with a new ridge‐erosion model that can be used to estimate original sandstone‐body extent. Ridge networks represent caprocks intersecting at distinct stratigraphic levels, rather than a preserved channel network. Caprocks are interpreted as amalgamated channel belts, rather than inverted channels, with dune and bar cross stratification that was used to reconstruct paleo‐channel dimensions. Curvilinear features on ridge tops are outcropping lateral accretion sets (LAS) from point bars and indicate meandering. We found that caprock thickness scales with paleo‐channel depth and LAS curvature scales with paleo‐channel width. Application of these relations to a ridge in Aeolis Dorsa, Mars, yielded consistent water discharge estimates (310–1,800 m³/s). In contrast, using ridge width or ridge radius of curvature as paleo‐channel proxies overestimated discharge by a factor of 30–500. In addition, the ridge‐erosion model suggests that scarp retreat may be less efficient on Mars, resulting in taller and wider ridges, with more intact caprocks. Altogether, our results support the hypothesis that ridges are exhumed channel belts and floodplain deposits implying long‐lived fluvial activity recorded within a depositional basin

    Gamma-Ray Bursts as a Probe of the Very High Redshift Universe

    Get PDF
    We show that, if many GRBs are indeed produced by the collapse of massive stars, GRBs and their afterglows provide a powerful probe of the very high redshift (z > 5) universe.Comment: To appear in Proc. of the 5th Huntsville Gamma-Ray Burst Symposium, 5 pages, LaTe
    corecore