8,177 research outputs found
Dust Evolution and the Formation of Planetesimals
The solid content of circumstellar disks is inherited from the interstellar
medium: dust particles of at most a micrometer in size. Protoplanetary disks
are the environment where these dust grains need to grow at least 13 orders of
magnitude in size. Our understanding of this growth process is far from
complete, with different physics seemingly posing obstacles to this growth at
various stages. Yet, the ubiquity of planets in our galaxy suggests that planet
formation is a robust mechanism. This chapter focuses on the earliest stages of
planet formation, the growth of small dust grains towards the gravitationally
bound "planetesimals", the building blocks of planets. We will introduce some
of the key physics involved in the growth processes and discuss how they are
expected to shape the global behavior of the solid content of disks. We will
consider possible pathways towards the formation of larger bodies and conclude
by reviewing some of the recent observational advances in the field.Comment: 43 pages, 6 figures. Chapter in International Space Science Institute
(ISSI) Book on "The Disk in Relation to the Formation of Planets and their
Proto-atmospheres", published in Space Science Reviews by Springe
Protoplanetary Disk Turbulence Driven by the Streaming Instability: Non-Linear Saturation and Particle Concentration
We present simulations of the non-linear evolution of streaming instabilities
in protoplanetary disks. The two components of the disk, gas treated with grid
hydrodynamics and solids treated as superparticles, are mutually coupled by
drag forces. We find that the initially laminar equilibrium flow spontaneously
develops into turbulence in our unstratified local model. Marginally coupled
solids (that couple to the gas on a Keplerian time-scale) trigger an upward
cascade to large particle clumps with peak overdensities above 100. The clumps
evolve dynamically by losing material downstream to the radial drift flow while
receiving recycled material from upstream. Smaller, more tightly coupled solids
produce weaker turbulence with more transient overdensities on smaller length
scales. The net inward radial drift is decreased for marginally coupled
particles, whereas the tightly coupled particles migrate faster in the
saturated turbulent state. The turbulent diffusion of solid particles, measured
by their random walk, depends strongly on their stopping time and on the
solids-to-gas ratio of the background state, but diffusion is generally modest,
particularly for tightly coupled solids. Angular momentum transport is too weak
and of the wrong sign to influence stellar accretion. Self-gravity and
collisions will be needed to determine the relevance of particle overdensities
for planetesimal formation.Comment: Accepted for publication in ApJ (17 pages). Movies of the simulations
can be downloaded at http://www.mpia.de/~johansen/research_en.ph
Nonperturbative Formulas for Central Functions of Supersymmetric Gauge Theories
For quantum field theories that flow between ultraviolet and infrared fixed
points, central functions, defined from two-point correlators of the stress
tensor and conserved currents, interpolate between central charges of the UV
and IR critical theories. We develop techniques that allow one to calculate the
flows of the central charges and that of the Euler trace anomaly coefficient in
a general N=1 supersymmetric gauge theory. Exact, explicit formulas for
gauge theories in the conformal window are given and analysed. The
Euler anomaly coefficient always satisfies the inequality .
This is new evidence in strongly coupled theories that this quantity satisfies
a four-dimensional analogue of the -theorem, supporting the idea of
irreversibility of the RG flow. Various other implications are discussed.Comment: latex, 27 page
Alien Registration- Johansen, A T. (Portland, Cumberland County)
https://digitalmaine.com/alien_docs/31256/thumbnail.jp
Analysis of the phenomenon of speculative trading in one of its basic manifestations: postage stamp bubbles
We document and analyze the empirical facts concerning one of the clearest
evidence of speculation in financial trading as observed in the postage
collection stamp market. We unravel some of the mechanisms of speculative
behavior which emphasize the role of fancy and collective behavior. In our
conclusion, we propose a classification of speculative markets based on two
parameters, namely the amplitude of the price peak and a second parameter that
measures its ``sharpness''. This study is offered to anchor modeling efforts to
realistic market constraints and observations.Comment: 9 pages, 5 figures and 2 tables, in press in Int. J. Mod. Phys.
Decay dynamics of quantum dots influenced by the local density of optical states of two-dimensional photonic crystal membranes
We have performed time-resolved spectroscopy on InAs quantum dot ensembles in
photonic crystal membranes. The influence of the photonic crystal is
investigated by varying the lattice constant systematically. We observe a
strong slow down of the quantum dots' spontaneous emission rates as the
two-dimensional bandgap is tuned through their emission frequencies. The
measured band edges are in full agreement with theoretical predictions. We
characterize the multi-exponential decay curves by their mean decay time and
find enhancement of the spontaneous emission at the bandgap edges and strong
inhibition inside the bandgap in good agreement with local density of states
calculations.Comment: 9 pages (preprint), 3 figure
A new approach to the inverse problem for current mapping in thin-film superconductors
A novel mathematical approach has been developed to complete the inversion of
the Biot-Savart law in one- and two-dimensional cases from measurements of the
perpendicular component of the magnetic field using the well-developed
Magneto-Optical Imaging technique. Our approach, especially in the 2D case, is
provided in great detail to allow a straightforward implementation as opposed
to those found in the literature. Our new approach also refines our previous
results for the 1D case [Johansen et al., Phys. Rev. B 54, 16264 (1996)], and
streamlines the method developed by Jooss et al. [Physica C 299, 215 (1998)]
deemed as the most accurate if compared to that of Roth et al. [J. Appl. Phys.
65, 361 (1989)]. We also verify and streamline the iterative technique, which
was developed following Laviano et al. [Supercond. Sci. Technol. 16, 71 (2002)]
to account for in-plane magnetic fields caused by the bending of the applied
magnetic field due to the demagnetising effect. After testing on
magneto-optical images of a high quality YBa2Cu3O7 superconducting thin film,
we show that the procedure employed is effective
- …