57,943 research outputs found

    Relativistic, model-independent, multichannel 222\to2 transition amplitudes in a finite volume

    Get PDF
    We derive formalism for determining 2+J2\textbf{2} + \mathcal J \to \textbf{2} infinite-volume transition amplitudes from finite-volume matrix elements. Specifically, we present a relativistic, model-independent relation between finite-volume matrix elements of external currents and the physically observable infinite-volume matrix elements involving two-particle asymptotic states. The result presented holds for states composed of two scalar bosons. These can be identical or non-identical and, in the latter case, can be either degenerate or non-degenerate. We further accommodate any number of strongly-coupled two-scalar channels. This formalism will, for example, allow future lattice QCD calculations of the ρ\rho-meson form factor, in which the unstable nature of the ρ\rho is rigorously accommodated.Comment: 35 pages, 11 figure

    Rhodobacter veldkampii, a new species of phototrophic purple nonsulfur bacteria

    Get PDF
    We describe a new species of purple nonsulfur bacteria, which has the ability to grow under photoautotrophic growth conditions with sulfide as an electron donor and shows the characteristic properties of Rhodobacter species (i.e., ovoid to rod-shaped cells, vesicular internal photosynthetic membranes, bacteriochlorophyll a and carotenoids of the spheroidene series as photosynthetic pigments). In its physiological properties this new species is particularly similar to the recently described species Rhodobacter adriaticus, but it shows enough differences compared with R. adriaticus and the other Rhodobacter species to be recognized as a separate species. In honor of Hans Veldkamp, a Dutch microbiologist, the name Rhodobacter veldkampii sp. nov. is proposed

    Lattice model for cold and warm swelling of polymers in water

    Full text link
    We define a lattice model for the interaction of a polymer with water. We solve the model in a suitable approximation. In the case of a non-polar homopolymer, for reasonable values of the parameters, the polymer is found in a non-compact conformation at low temperature; as the temperature grows, there is a sharp transition towards a compact state, then, at higher temperatures, the polymer swells again. This behaviour closely reminds that of proteins, that are unfolded at both low and high temperatures.Comment: REVTeX, 5 pages, 2 EPS figure

    Eighth-order phase-field-crystal model for two-dimensional crystallization

    Get PDF
    We present a derivation of the recently proposed eighth order phase field crystal model [Jaatinen et al., Phys. Rev. E 80, 031602 (2009)] for the crystallization of a solid from an undercooled melt. The model is used to study the planar growth of a two dimensional hexagonal crystal, and the results are compared against similar results from dynamical density functional theory of Marconi and Tarazona, as well as other phase field crystal models. We find that among the phase field crystal models studied, the eighth order fitting scheme gives results in good agreement with the density functional theory for both static and dynamic properties, suggesting it is an accurate and computationally efficient approximation to the density functional theory

    Progress in three-particle scattering from LQCD

    Full text link
    We present the status of our formalism for extracting three-particle scattering observables from lattice QCD (LQCD). The method relies on relating the discrete finite-volume spectrum of a quantum field theory with its scattering amplitudes. As the finite-volume spectrum can be directly determined in LQCD, this provides a method for determining scattering observables, and associated resonance properties, from the underlying theory. In a pair of papers published over the last two years, two of us have extended this approach to apply to relativistic three-particle scattering states. In this talk we summarize recent progress in checking and further extending this result. We describe an extension of the formalism to include systems in which two-to-three transitions can occur. We then present a check of the previously published formalism, in which we reproduce the known finite-volume energy shift of a three-particle bound state.Comment: 9 pages, 3 figures, proceedings for XIIth Quark Confinement and the Hadron Spectrum (CONF12

    Three-particle systems with resonant subprocesses in a finite volume

    Get PDF
    In previous work, we have developed a relativistic, model-independent three-particle quantization condition, but only under the assumption that no poles are present in the two-particle K matrices that appear as scattering subprocesses. Here we lift this restriction, by deriving the quantization condition for identical scalar particles with a G-parity symmetry, in the case that the two-particle K matrix has a pole in the kinematic regime of interest. As in earlier work, our result involves intermediate infinite-volume quantities with no direct physical interpretation, and we show how these are related to the physical three-to-three scattering amplitude by integral equations. This work opens the door to study processes such as a2ρππππa_2 \to \rho \pi \to \pi \pi \pi, in which the ρ\rho is rigorously treated as a resonance state.Comment: 46 pages, 9 figures, JLAB-THY-18-2819, CERN-TH-2018-21

    Numerical Modeling of Pulse Wave Propagation in a Stenosed Artery using Two-Way Coupled Fluid Structure Interaction (FSI)

    Full text link
    As the heart beats, it creates fluctuation in blood pressure leading to a pulse wave that propagates by displacing the arterial wall. These waves travel through the arterial tree and carry information about the medium that they propagate through as well as information of the geometry of the arterial tree. Pulse wave velocity (PWV) can be used as a non-invasive diagnostic tool to study the functioning of cardiovascular system. A stenosis in an artery can dampen the pulse wave leading to changes in the propagating pulse. Hence, PWV analysis can be performed to detect a stenosed region in arteries. This paper presents a numerical study of pulse wave propagation in a stenosed artery by means of two-way coupled fluid structure interaction (FSI). The computational model was validated by the comparison of the simulated PWV results with theoretical values for a healthy artery. Propagation of the pulse waves in the stenosed artery was compared with healthy case using spatiotemporal maps of wall displacements. The analysis for PWV showed significance differences between the healthy and stenosed arteries including damping of propagating waves and generation of high wall displacements downstream the stenosis caused by flow instabilities. This approach can be used to develop patient-specific models that are capable of predicting PWV signatures associated with stenosis changes. The knowledge gained from these models may increase utility of this approach for managing patients at risk of stenosis occurrence

    Numerical study of the relativistic three-body quantization condition in the isotropic approximation

    Get PDF
    We present numerical results showing how our recently proposed relativistic three-particle quantization condition can be used in practice. Using the isotropic (generalized ss-wave) approximation, and keeping only the leading terms in the effective range expansion, we show how the quantization condition can be solved numerically in a straightforward manner. In addition, we show how the integral equations that relate the intermediate three-particle infinite-volume scattering quantity, Kdf,3\mathcal K_{\text{df},3}, to the physical scattering amplitude can be solved at and below threshold. We test our methods by reproducing known analytic results for the 1/L1/L expansion of the threshold state, the volume dependence of three-particle bound-state energies, and the Bethe-Salpeter wavefunctions for these bound states. We also find that certain values of Kdf,3\mathcal K_{\text{df},3} lead to unphysical finite-volume energies, and give a preliminary analysis of these artifacts.Comment: 32 pages, 21 figures, JLAB-THY-18-2657, CERN-TH-2018-046; version 2: corrected typos, updated references, minor stylistic changes---consistent with published versio
    corecore