1,201 research outputs found

    MOTIFATOR: detection and characterization of regulatory motifs using prokaryote transcriptome data

    Get PDF
    Summary: Unraveling regulatory mechanisms (e.g. identification of motifs in cis-regulatory regions) remains a major challenge in the analysis of transcriptome experiments. Existing applications identify putative motifs from gene lists obtained at rather arbitrary cutoff and require additional manual processing steps. Our standalone application MOTIFATOR identifies the most optimal parameters for motif discovery and creates an interactive visualization of the results. Discovered putative motifs are functionally characterized, thereby providing valuable insight in the biological processes that could be controlled by the motif.

    MINOMICS:visualizing prokaryote transcriptomics and proteomics data in a genomic context

    Get PDF
    We have developed MINOMICS, a tool that allows facile and in-depth visualization of prokaryotic transcriptomic and proteomic data in conjunction with genomics data. MINOMICS generates interactive linear genome maps in which multiple experimental datasets are displayed together with operon, regulatory motif, transcriptional promoter and transcriptional terminator information

    Projector 2: contig mapping for efficient gap-closure of prokaryotic genome sequence assemblies

    Get PDF
    With genome sequencing efforts increasing exponentially, valuable information accumulates on genomic content of the various organisms sequenced. Projector 2 uses (un)finished genomic sequences of an organism as a template to infer linkage information for a genome sequence assembly of a related organism being sequenced. The remaining gaps between contigs for which no linkage information is present can subsequently be closed with direct PCR strategies. Compared with other implementations, Projector 2 has several distinctive features: a user-friendly web interface, automatic removal of repetitive elements (repeat-masking) and automated primer design for gap-closure purposes. Moreover, when using multiple fragments of a template genome, primers for multiplex PCR strategies can also be designed. Primer design takes into account that, in many cases, contig ends contain unreliable DNA sequences and repetitive sequences. Closing the remaining gaps in prokaryotic genome sequence assemblies is thereby made very efficient and virtually effortless. We demonstrate that the use of single or multiple fragments of a template genome (i.e. unfinished genome sequences) in combination with repeat-masking results in mapping success rates close to 100%. The web interface is freely accessible at

    SpotXplore: a Cytoscape plugin for visual exploration of hotspot expression in gene regulatory networks

    Get PDF
    Summary: SpotXplore is a plugin for Cytoscape for extraction and visualization of differentially expressed subnetworks (hotspots) from gene networks. The hotspot-based visualization approach enables interactive exploration of regulatory interactions in differentially expressed gene sets, and it allows a researcher to explore gene expression in direct relation to the affected cellular gene network. The hotspots provide a view beyond the commonly used metabolic pathways and gene ontologies

    Words with the Maximum Number of Abelian Squares

    Full text link
    An abelian square is the concatenation of two words that are anagrams of one another. A word of length nn can contain Θ(n2)\Theta(n^2) distinct factors that are abelian squares. We study infinite words such that the number of abelian square factors of length nn grows quadratically with nn.Comment: To appear in the proceedings of WORDS 201

    BAGEL:a web-based bacteriocin genome mining tool

    Get PDF
    A common problem in the annotation of open reading frames (ORFs) is the identification of genes that are functionally similar but have limited or no sequence homology. This is particularly the case for bacteriocins, a very diverse group of antimicrobial peptides produced by bacteria and usually encoded by small, poorly conserved ORFs. ORFs surrounding bacteriocin genes are often biosynthetic genes. This information can be used to locate putative structural bacteriocin genes. Here, we describe BAGEL, a web server that identifies putative bacteriocin ORFs in a DNA sequence using novel, knowledge-based bacteriocin databases and motif databases. Many bacteriocins are encoded by small genes that are often omitted in the annotation process of bacterial genomes. Thus, we have implemented ORF detection using a number of published ORF prediction tools. In addition, BAGEL takes into account the genomic context, i.e. for each potential bacteriocin-encoding ORF, the sequence of the surrounding region on the genome is analyzed for genes that might encode proteins involved in biosynthesis, transport, regulation and/or immunity. These innovations make BAGEL unique in its ability to detect putative bacteriocin gene clusters in (new) bacterial genomes. BAGEL is freely accessible at:
    corecore