46 research outputs found

    A Practical Approach for Electricity Load Forecasting

    Get PDF
    This paper is a continuation of our daily energy peak load forecasting approach using our modified network which is part of the recurrent networks family and is called feed forward and feed back multi context artificial neural network (FFFB-MCANN). The inputs to the network were exogenous variables such as the previous and current change in the weather components, the previous and current status of the day and endogenous variables such as the past change in the loads. Endogenous variable such as the current change in the loads were used on the network output. Experiment shows that using endogenous and exogenous variables as inputs to the FFFBMCANN rather than either exogenous or endogenous variables as inputs to the same network produces better results. Experiments show that using the change in variables such as weather components and the change in the past load as inputs to the FFFB-MCANN rather than the absolute values for the weather components and past load as inputs to the same network has a dramatic impact and produce better accuracy

    A Study of Sequence Distribution of a Painted Globule as a Model for Proteins with Good Folding Properties

    Get PDF
    In this paper we present a method to study the folding structure of a simple model consisting of two kinds of monomers, hydrophobic and hydrophilic. This method has three main steps: an efficient simulation method to bring an open sequence of homopolymer to a folded state, the application of a painting method called regular hull to the folded globule and the refolding process of the obtained copolymer sequence. This study allows us to suggest a theoretical function of disorder distribution for copolymer sequences that give rise to a compacted and well micro-phase separated globule

    A Study of Sequence Distribution of a Painted Globule as a Model for Proteins with Good Folding Properties

    Get PDF
    In this paper we present a method to study the folding structure of a simple model consisting of two kinds of monomers, hydrophobic and hydrophilic. This method has three main steps: an efficient simulation method to bring an open sequence of homopolymer to a folded state, the application of a painting method called regular hull to the folded globule and the refolding process of the obtained copolymer sequence. This study allows us to suggest a theoretical function of disorder distribution for copolymer sequences that give rise to a compacted and well micro-phase separated globule
    corecore