35,218 research outputs found

    An unified cosmological evolution driven by a mass dimension one fermionic field

    Full text link
    An unified cosmological model for an Universe filled with a mass dimension one (MDO) fermionic field plus the standard matter fields is considered. After a primordial quantum fluctuation the field slowly rolls down to the bottom of a symmetry breaking potential, driving the Universe to an inflationary regime that increases the scale factor for about 71 e-folds. After the end of inflation, the field starts to oscillate and can transfer its energy to the standard model particles through a reheating mechanism. Such a process is briefly discussed in terms of the admissible couplings of the MDO field with the electromagnetic and Higgs fields. We show that even if the field loses all its kinetic energy during reheating, it can evolve as dark matter due a gravitational coupling (of spinorial origin) with baryonic matter. Since the field acquires a constant value at the bottom of the potential, a non-null, although tiny, mass term acts as a dark energy component nowadays. Therefore, we conclude that MDO fermionic field is a good candidate to drive the whole evolution of the Universe, in such a way that the inflationary field, dark matter and dark energy are described by different manifestations of a single field.Comment: 22 pages, 5 figure

    Dynamical Evolution of a Cylindrical Shell with Rotational Pressure

    Full text link
    We prepare a general framework for analyzing the dynamics of a cylindrical shell in the spacetime with cylindrical symmetry. Based on the framework, we investigate a particular model of a cylindrical shell-collapse with rotational pressure, accompanying the radiation of gravitational waves and massless particles. The model has been introduced previously but has been awaiting for proper analysis. Here the analysis is put forward: It is proved that, as far as the weak energy condition is satisfied outside the shell, the collapsing shell bounces back at some point irrespective of the initial conditions, and escapes from the singularity formation. The behavior after the bounce depends on the sign of the shell pressure in the z-direction. When the pressure is non-negative, the shell continues to expand without re-contraction. On the other hand, when the pressure is negative (i.e. it has a tension), the behavior after the bounce can be more complicated depending on the details of the model. However, even in this case, the shell never reaches the zero-radius configuration.Comment: To appear in Phys. Rev.
    • …
    corecore