33 research outputs found

    Advantages in using non-isothermal bioreactors in bioremediation of water polluted by phenol by means of immobilized laccase from Rhus vernicifera

    No full text
    Laccase from Rhus vernicifera was immobilized on a polypropylene membrane chemically modified with chromic acid. Ethylenediamine and glutaraldehyde were used as spacer and bifunctional coupling agent, respectively. Phenol was used as substrate. To know how the immobilization procedures affected the enzyme reaction rate the catalytic behavior of soluble and insoluble laccase was studied under isothermal conditions as a function of pH, temperature and substrate concentration. From these studies, two main singularities emerged: (i) the narrower pH–activity profile of the soluble enzyme in comparison to that of the insoluble counterpart and (ii) the increase in pH and thermal stability of the insoluble enzyme. The laccase catalytic behaviorwas also studied in a non-isothermal bioreactor as a function of substrate concentration and size of the applied transmembrane temperature difference. It was found that, under non-isothermal conditions and keeping constant the average temperature of the bioreactor, the enzyme reaction rate linearly increased with the increase of the temperature difference

    Non-isothermal bioremediation of waters polluted by phenol and some of its derivatives by laccase covalently immobilized on polypropylene membranes

    No full text
    In view of the heath problems induced by the presence into the environment of endocrine disruptors, laccase from Trametes versicolor was covalently immobilized on a chemically modified polypropylene membrane in order to remove phenol and its derivatives from polluted waters. Using phenol as substrate model the optimal immobilization conditions were determined. The immobilized laccase exhibited maximal enzyme activity at pH 5.5 and optimal temperature at 55 °C. These operative parameters have been compared with those obtained with the soluble laccase in order to ascertain the immobilization effect. When employed in a bioreactor operating under isothermal conditions the immobilized laccase was able to oxidize a wide range of phenolic substrates. In particular it was found that some phenol derivatives (2-CP, 3-CP, 4-CP, NP and chlorophene) were oxidized at a similar rate than phenol, other derivatives (paracetamol, 3-MP and chloroxyphenol) at a smaller rate, while others (2,4-DCP and BPA) at higher rate. When the catalytic membrane was employed in a non-isothermal reactor the reaction rate increased with the increase of the applied temperature difference. Practically the increase of the laccase oxidative power under the non-isothermal conditions followed the same sequence observed under isothermal conditions. Interesting enough, the percentage increase of enzyme reaction rate under non-isothermal conditions resulted higher in the cases in which the isothermal reaction rate was smaller. When the reduction of the production times by the presence of a temperature gradient is considered, the measured values strongly candidate the technology of non-isothermal bioreactors as a useful tool in processes of detoxification of waste waters polluted by endocrine disruptors of phenolic origin. © 2010 Elsevier B.V. All rights reserved

    Biodegradation of bisphenols with immobilized laccase or tyrosinase on polyacrylonitrile beads

    No full text
    The biodegradation of waters polluted by some bisphenols, endowed with endocrine activity, has been studied by means of laccase or tyrosinase immobilized on polyacrylonitrile (PAN) beads. Bisphenol A (BPA), Bisphenol B (BPB), Bisphenol F (BPF) and Tetrachlorobisphenol A (TCBPA) have been used. The laccase-PAN beads system has been characterized as a function of pH, temperature and substrate concentration. The biochemical parameters so obtained have been compared with those of the free enzyme to evidence the modification induced by the immobilization process. Once characterized, the laccase-PAN beads have been employed in a fluidized bed reactor to determine for each of the four bisphenols the degradation rate constant (k); the τ50, i.e., the time to obtain the 50% of degradation, and the removal efficiency (RE90) after 90 min of enzyme treatment. The same parameters have been measured for each of the four pollutants with the same fluidized bed bioreactor loaded with tyrosinase-PAN beads. The internal comparison, i.e., in each of the two catalytic systems, has shown that both enzymes exhibit a removal efficiency in the following order BPF>BPA>BPB>TCBPA. The external comparison, i.e., the comparison between the two catalytic system, has shown that the catalytic power of laccase were higher than that of tyrosinase. The operational stability of both catalytic systems resulted excellent, since they maintained more than 80% of the initial activity after 30 days of work. © 2010 Springer Science+Business Media B.V
    corecore