20,142 research outputs found

    Electron counting of single-electron tunneling current

    Get PDF
    Single-electron tunneling through a quantum dot is detected by means of a radio-frequency single-electron transistor.. Poisson statistics of single-electron-tunneling events are observed from frequency domain measurements, and individual tunneling events are detected in the time-domain measurements. Counting tunneling events gives an accurate current measurement in the saturated current regime, where electrons tunnel into the dot only from one electrode and tunnel out of the dot only to the other electrode. (C) 2004 American Institute of Physics.X119698sciescopu

    Dynamic model for failures in biological systems

    Full text link
    A dynamic model for failures in biological organisms is proposed and studied both analytically and numerically. Each cell in the organism becomes dead under sufficiently strong stress, and is then allowed to be healed with some probability. It is found that unlike the case of no healing, the organism in general does not completely break down even in the presence of noise. Revealed is the characteristic time evolution that the system tends to resist the stress longer than the system without healing, followed by sudden breakdown with some fraction of cells surviving. When the noise is weak, the critical stress beyond which the system breaks down increases rapidly as the healing parameter is raised from zero, indicative of the importance of healing in biological systems.Comment: To appear in Europhys. Let

    Polarization Relaxation Induced by Depolarization Field in Ultrathin Ferroelectric BaTiO3_3 Capacitors

    Full text link
    Time-dependent polarization relaxation behaviors induced by a depolarization field EdE_{d} were investigated on high-quality ultrathin SrRuO3_{3}/BaTiO3_{3}/SrRuO3_{3} capacitors. The EdE_d values were determined experimentally from an applied external field to stop the net polarization relaxation. These values agree with those from the electrostatic calculations, demonstrating that a large EdE_{d} inside the ultrathin ferroelectric layer could cause severe polarization relaxation. For numerous ferroelectric devices of capacitor configuration, this effect will set a stricter size limit than the critical thickness issue

    Dynamic model of fiber bundles

    Full text link
    A realistic continuous-time dynamics for fiber bundles is introduced and studied both analytically and numerically. The equation of motion reproduces known stationary-state results in the deterministic limit while the system under non-vanishing stress always breaks down in the presence of noise. Revealed in particular is the characteristic time evolution that the system tends to resist the stress for considerable time, followed by sudden complete rupture. The critical stress beyond which the complete rupture emerges is also obtained

    Polarization Switching Dynamics Governed by Thermodynamic Nucleation Process in Ultrathin Ferroelectric Films

    Full text link
    A long standing problem of domain switching process - how domains nucleate - is examined in ultrathin ferroelectric films. We demonstrate that the large depolarization fields in ultrathin films could significantly lower the nucleation energy barrier (U*) to a level comparable to thermal energy (kBT), resulting in power-law like polarization decay behaviors. The "Landauer's paradox": U* is thermally insurmountable is not a critical issue in the polarization switching of ultrathin ferroelectric films. We empirically find a universal relation between the polarization decay behavior and U*/kBT.Comment: 5 pages, 4 figure

    Coercive fields in ultrathin BaTiO3 capacitors

    Full text link
    Thickness-dependence of coercive field (EC) was investigated in ultrathin BaTiO3 capacitors with thicknesses (d) between 30 and 5 nm. The EC appears nearly independent of d below 15 nm, and decreases slowly as d increases above 15 nm. This behavior cannot be explained by extrinsic effects, such as interfacial passive layers or strain relaxation, nor by homogeneous domain models. Based on domain nuclei formation model, the observed EC behavior is explainable via a quantitative level. A crossover of domain shape from a half-prolate spheroid to a cylinder is also suggested at d~ 15 nm, exhibiting good agreement with experimental results.Comment: 10 pages, 3 figure

    Efficient magneto-optical trapping of Yb atoms with a violet laser diode

    Full text link
    We report the first efficient trapping of rare-earth Yb atoms with a high-power violet laser diode (LD). An injection-locked violet LD with a 25 mW frequency-stabilized output was used for the magneto-optical trapping (MOT) of fermionic as well as bosonic Yb isotopes. A typical number of 4×1064\times 10^6 atoms for 174^{174}Yb with a trap density of 1×108/\sim 1\times10^8/cm3^3 was obtained. A 10 mW violet external-cavity LD (ECLD) was used for the one-dimensional (1D) slowing of an effusive Yb atomic beam without a Zeeman slower resulting in a 35-fold increase in the number of trapped atoms. The overall characteristics of our compact violet MOT, e.g., the loss time of 1 s, the loading time of 400 ms, and the cloud temperature of 0.7 mK, are comparable to those in previously reported violet Yb MOTs, yet with a greatly reduced cost and complexity of the experiment.Comment: 5 pages, 3 figures, 1 table, Phys. Rev. A (to be published

    Giant Flexoelectric Effect in Ferroelectric Epitaxial Thin Films

    Full text link
    We report on nanoscale strain gradients in ferroelectric HoMnO3 epitaxial thin films, resulting in a giant flexoelectric effect. Using grazing-incidence in-plane X-ray diffraction, we measured strain gradients in the films, which were 6 or 7 orders of magnitude larger than typical values reported for bulk oxides. The combination of transmission electron microscopy, electrical measurements, and electrostatic calculations showed that flexoelectricity provides a means of tuning the physical properties of ferroelectric epitaxial thin films, such as domain configurations and hysteresis curves.Comment: Accepted by Phys. Rev. Let
    corecore