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Single-electron tunneling through a quantum dot is detected by means of a radio-frequency
single-electron transistor. Poisson statistics of single-electron tunneling events are observed from
frequency domain measurements, and individual tunneling events are detected in the time-domain
measurements. Counting tunneling events gives an accurate current measurement in the saturated
current regime, where electrons tunnel into the dot only from one electrode and tunnel out of the dot
only to the other electrode. ©2004 American Institute of Physics.@DOI: 10.1063/1.1691491#

Single-electron tunneling is a correlated tunneling phe-
nomenon that arises due to the Coulomb blockade~CB! ef-
fect, and is widely accepted in many physical systems.1 The
correlation has been studied from ensemble characteristics,
such as shot noise measurements and pumping current driven
by an oscillating potential.2–4 However, direct observation of
single-electron tunneling is remained in a very low fre-
quency region. A radio-frequency single-electron transistor
~RF-SET!, in which charge on the island can be measured
using an RF carrier signal reflected from or transmitted
through the SET,5–7 allows us to detect each single-electron
tunneling event through a quantum dot~QD! electrostatically
coupled to the RF-SET. Because of its fast response and high
sensitivity, this scheme should enable us to count tunneling
electrons of an extremely small current accurately. Actually,
this scheme has been demonstrated in a semiconductor QD
coupled to a metal RF-SET.8 However, the measurement was
performed in the thermally activated regime, where the count
is not directly related to the current. In this letter, we report
similar measurements on a semiconductor double QD in the
saturated tunneling regime, where the count should corre-
spond to the net current.

Figure 1~a! shows our experimental setup for counting
single-electron tunneling events. Two electrically isolated
SETs are integrated in an AlGaAs/GaAs heterostructure. Al-
though the device is designed so that up to four QDs can be
formed in the two channels, we activated one QD in each
channel by applying negative gate voltagesVL andVR to the
upper SET andVl , Vc , andVr to the lower one in this study.
All measurements were performed at a temperatureT;100
mK. The lower SET is combined with aLC resonator~in-
ductanceL5100 nH; capacitanceC;0.6 pF! and works as a
transmission-type RF-SET.6 An RF carrier signal at the reso-
nant frequency~about 650 MHz! is introduced with an am-
plitude of about 0.3 mV at the source electrode. The trans-
mitted signal is amplified and detected as a voltage,Vdet,

which is proportional to the conductance of the lower SET.
The resistance of the RF-SET is about 500 kV at the best
charge sensitivity. The single-electron charging energy is
about 1 meV for the RF-SET, and about 1.5 meV for the
upper SET. The QD in each SET contains several ten elec-
trons. The two QDs are separated by about 700 nm and elec-
trostatically coupled with a small mutual capacitance. Add-
ing an electron on the upper dot induces an equivalent charge
of about 0.005e on the lower dot and changes the RF-SET
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fujisawa@will.brl.ntt.co.jp; also at Tokyo Institute of Technology.

b!Also at: SORST-JST, 4-1-8 Honmachi, Kawaguchi, 331-0012, Japan.

FIG. 1. ~a! Schematic diagram of the measurement setup. The sample
shown in the scanning electron micrograph contains two GaAs QDs~white
circles! made by dry etching~upper, central, and lower dark regions! and
Schottky gates~vertical bright lines!. The measurement was performed in a
dilution refrigerator (T;0.1 K). ~b! Typical Coulomb blockade oscillations
of the upper QD measured by a current.~c! Derivative of the RF-SET signal,
d^Vdet&/dVe . The fine trace, labeled f, is offset vertically for clarity.~d!
Energy diagram of a single-electron tunneling process.~e! Schematic illus-
tration of I sd, ^N&, ^dVdet& andd^Vdet&/dVe around a CB peak in the satu-
rated current regime.
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signalVdet. This coupling is much weaker than that used in
previous studies6,8 and therefore effectively minimizes the
heating effect on the upper QD from the RF signal.

We start from static characteristics of the upper SET. In
our device, tunneling rates,GL and GR respectively for the
left and right barriers, can be controlled byVL andVR . For
convenience, we defineVe(Vd), which changesVL and VR

simultaneously in the same direction~in the opposite direc-
tion! @defined in Fig. 1~a!#. IncreasingVe lowers the potential
of the upper QD and increasesGL and GR with the ratio
GL /GR kept almost constant. IncreasingVd increases the ra-
tio GL /GR with the dot potential kept almost constant. Figure
1~b! shows Coulomb blockade oscillations that appeared in
the currentI sd through the upper SET whenVe was swept at
the symmetric barrier condition,GL;GR , at Vd50. The
peak current decreases dramatically asGL andGR decrease.
During this measurement, the averaged RF-SET signal^Vdet&
was simultaneously monitored. Its derivatived^Vdet&/dVe is
plotted in Fig. 1~c!. Since the gate voltages for the upper
SET slightly affect the RF-SET, we adjustedVc to obtain
sufficient charge sensitivity for the wholeVe range. One can
see small peaks~Nos. 1–6! in the d^Vdet&/dVe curves at the
sameVe where current peaks appear inI sd , as indicated by
vertical lines. Single-electron charging on the upper QD is
reflected in the conductance through the lower QD.8,9

In a fine sweep, labeled ‘‘f’’ in Fig. 1~c!, however, each
peak divided into two peaks~indicated by triangles!. This is
the signature of the saturated tunneling regime. When a rela-
tively large source-drain voltage,Vsd, is applied as shown in
the energy diagram of Fig. 1~d!, an electron enters the dot
with a rateGL and leaves the dot with a rateGR . For sim-
plicity, the electrochemical potentialmd for only the ground
state is considered. Whenmd is located between the electro-
chemical potential of the left and right electrodes,mL andmR

respectively, and the separation betweenmd , mL , andmR is
much larger than thermal energy,kT, and linewidth,\G, the
current is given byI 5eGLGR /(GL1GR) independent of
other parameters, such asVsd.10 In this case, backward tun-
neling processes, i.e., tunneling from the QD to the left elec-
trode, are blocked. This is the situation where the count of
single-electron tunneling events should agree with the net
current amplitude. Outside this regime, the count increases
by the number of backward tunneling events, since charge
measurement cannot determine which electrode an electron
has tunneled to.8

In this saturated current regime, a CB current peak has a
broad flat-top current profile, as shown by the uppermost
curve in Fig. 1~e!. The average electron number in the con-
stant current region is given by^N&5N01GL /(GL1GR), as
illustrated by the second curve. Due to the coupling between
the two QDs, the average value ofVdet exhibits two steps
superimposed in a broad CB peak~the third curve!, and two
corresponding peaks arises in the derivatived^Vdet&/dVe ~the
lowest curve!. Thus, the saturated current region is located
between the two peaks.

Figure 2~a! shows thed^Vdet&/dVe traces observed when
the symmetry of the tunneling rates were changed. Since a
largerVsd of 0.5 mV was applied, the double peak character-
istics were clearly resolved, but only observed atVd50,
where the two barriers are almost symmetric (GL;GR).

When the barriers are strongly asymmetric,^N& becomes
close to an integer, and only one peak can be observed. Fig-
ure 2~b! shows the intensity plots ofd^Vdet&/dVe for two
asymmetric-barrier conditions. The peaks move on the con-
dition mL5md for GL@GR in the upper plot and onmd

5mR for GL!GR in the lower plot. This also supports the
above discussions about the saturated transport regime.

FIG. 2. ~Color! ~a! d^Vdet&/dVe traces when the symmetry of the barriers is
changed byVd . ~b! Color intensity plots ofd^Vdet&/dVe for two asymmetric-
barrier conditions.

FIG. 3. ~Color! ~a! Frequency spectra of the RF-SET signal,Vdet, for the
CB condition and single-electron transport conditions~Nos. 3–6!. Mono-
chromatic peaks~50-Hz harmonics! have been removed for better visibility.
The dashed line is a Lorentzian fitting to spectrum No. 5.~b! Time-domain
measurements ofVdet for CB ~the lower trace! and the single-electron tun-
neling regime~the upper trace for No. 5!. No averaging was performed.~c!
Histograms,H(Vdet), of the two traces of~b! but for a longer time domain.

2344 Appl. Phys. Lett., Vol. 84, No. 13, 29 March 2004 Fujisawa et al.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

141.223.173.110 On: Thu, 16 Apr 2015 08:21:39



When excited states are involved in the transport,^N& is
determined by the total tunneling rate to ground and excited
states, and usually excited states have higher tunneling rates.
Therefore, the effective total tunneling rates may become
asymmetric. In order to minimize the influence from excited
states, we performed the following measurements atVsd50.3
mV, which is comparable to or even smaller than typical
energy spacing of 0.3–0.5 meV for the upper QD. We con-
firmed well-isolated double peak structures in fine sweeps.
Note again that the double peak is convincing evidence of
the saturated current regime, even though the current is too
small to see.

Now we discuss the time-dependent part of the charge
detection. Figure 3~a! shows the power spectra,Sdet(f), of
Vdet. The corresponding equivalent charge on the lower QD,
q, is shown in the right scale. The black trace, labeled CB,
was obtained when the upper SET was in the Coulomb
blockade region, and indicates the background noise in our
measurement system including the RF-SET. The low-
frequency 1/f noise originates from the QD device, while the
high-frequency white noise comes from the cold RF
amplifier.6 Other traces, labeled Nos. 3–6, were measured at
Vd50 in the saturated current regime. The excess spectrum
above the background noise can be expressed bySq( f )
5A2(e2/2p2)G/@ f 21(G/p)2#, which is expected for single-
electron tunneling current with symmetric tunneling rates,
GL5GR5G.11 A;0.005 is the coupling coefficient between
the two dots. The characteristic~3-dB rolloff! frequency,
f 05G/p, changes consistently with the tunneling current
shown in Fig. 1~b!. The fitting to the curve for No. 5 was
performed using parametersf 05750 Hz andA50.006 ~the
dashed line!. The spectrum for peak No. 4 showsG;30 kHz
( f 0;10 kHz), which is almost the same as theG;20 kHz
estimated from the peak current of 1.5 fA in Fig. 1~b!. This
coincidence clearly indicates that the observed excess spec-
trum comes from single-electron tunneling current in the
saturated current regime.

Figure 3~b! shows typicalVdet traces in the time domain.
We used a 1-kHz first-order low-pass filter to cut high-
frequency noise. The lower trace was measured when the
upper QD was in the CB regime, and indicates the back-
ground noise. The upper trace measured for peak No. 5 in-
cludes single-electron tunneling events, at whichVdet goes
up ~down! when an electron leaves~enters! the dot as marked
by solid~open! circles. The amplitude of the switching signal
corresponds to the equivalent charge of 0.005e on the lower
QD, which is consistent with the static characteristics. Un-
fortunately, the tunneling events are not always clear because
of the insufficient signal-to-noise ratio. Typical switching
frequency for the marks is aboutG51 kHz, which corre-
sponds to about 0.1 fA. ThisG is somewhat smaller than the
G;2.4 kHz (f 0;750 Hz) obtained from the frequency
spectrum, probably because some short-period tunneling
events are filtered out. Although the accuracy of the counting
is not very good at present, it is clear that each tunneling

event corresponds to an electron flow through a QD. It
should be noted that measuring sub-femtoampere current in a
10 ms period is extremely sensitive as compared to measure-
ment with a conventional current meter.

The single-electron tunneling correlation can be seen in
the histogram forVdet as shown in Fig. 3~c!. The appearance
of two peaks for No. 5 proves the single-electron tunneling
scheme, in which only two charge states are allowed. How-
ever, a single peak can be seen in the histogram in the CB
regime, where the number of electrons is fixed at an integer.

We have successfully observed single-electron tunneling
events in both frequency and time domains. The accuracy of
electron counting can be improved by increasing the cou-
pling coefficient and decreasing the background noise in the
measurement system. For the present result, the count should
correspond to the saturated current, which is given by device
parameters (GL andGR). In order to count electrons for ar-
bitrary current, the upper QD can be replaced with a weakly
coupled double quantum dot. Since electrons would then be
transferred through three charge states, the direction of the
electron flow could also be determined. Our device is also
designed for this purpose. Furthermore, this technique can be
applied to detect charge states and spin states of a single or
double quantum dot in a short time.12,13 If the measurement
time for detecting an electron can be made shorter than the
energy relaxation time of the system, the quantum state can
be measured at a time~single shot measurement!. The high-
speed charge detection scheme would bring about various
classical and quantum information technologies.

This work was partially supported by the Ministry of
Education of Korea through its BK21 program.
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