88,532 research outputs found
Sound velocity anisotropy in cubic crystals
Simple analytical expressions may be derived for sound velocities in cubic crystals by using lattice harmonics or functions which are invariant under the crystal symmetry operations. These expressions are in good agreement with the exact results for typical crystals such as metallic iron and potassium fluoride
Shuttle rocket booster computational fluid dynamics
Additional results and a revised and improved computer program listing from the shuttle rocket booster computational fluid dynamics formulations are presented. Numerical calculations for the flame zone of solid propellants are carried out using the Galerkin finite elements, with perturbations expanded to the zeroth, first, and second orders. The results indicate that amplification of oscillatory motions does indeed prevail in high frequency regions. For the second order system, the trend is similar to the first order system for low frequencies, but instabilities may appear at frequencies lower than those of the first order system. The most significant effect of the second order system is that the admittance is extremely oscillatory between moderately high frequency ranges
Development of a computerized analysis for solid propellant combustion instability with turbulence
A multi-dimensional numerical model has been developed for the unsteady state oscillatory combustion of solid propellants subject to acoustic pressure disturbances. Including the gas phase unsteady effects, the assumption of uniform pressure across the flame zone, which has been conventionally used, is relaxed so that a higher frequency response in the long flame of a double-base propellant can be calculated. The formulation is based on a premixed, laminar flame with a one-step overall chemical reaction and the Arrhenius law of decomposition with no condensed phase reaction. In a given geometry, the Galerkin finite element solution shows the strong resonance and damping effect at the lower frequencies, similar to the result of Denison and Baum. Extended studies deal with the higher frequency region where the pressure varies in the flame thickness. The nonlinear system behavior is investigated by carrying out the second order expansion in wave amplitude when the acoustic pressure oscillations are finite in amplitude. Offset in the burning rate shows a negative sign in the whole frequency region considered, and it verifies the experimental results of Price. Finally, the velocity coupling in the two-dimensional model is discussed
Epitaxial Growth of an n-type Ferromagnetic Semiconductor CdCr2Se4 on GaAs(001) and GaP(001)
We report the epitaxial growth of CdCr2Se4, an n-type ferromagnetic
semiconductor, on both GaAs and GaP(001) substrates, and describe the
structural, magnetic and electronic properties. Magnetometry data confirm
ferromagnetic order with a Curie temperature of 130 K, as in the bulk material.
The magnetization exhibits hysteretic behavior with significant remanence, and
an in-plane easy axis with a coercive field of ~125 Oe. Temperature dependent
transport data show that the films are semiconducting in character and n-type
as grown, with room temperature carrier concentrations of n ~ 1 x 10^18 cm-3.Comment: 12 pages, 3 figure
Principal Component Analysis of Cavity Beam Position Monitor Signals
Model-independent analysis (MIA) methods are generally useful for analysing
complex systems in which relationships between the observables are non-trivial
and noise is present. Principle Component Analysis (PCA) is one of MIA methods
allowing to isolate components in the input data graded to their contribution
to the variability of the data. In this publication we show how the PCA can be
applied to digitised signals obtained from a cavity beam position monitor
(CBPM) system on the example of a 3-cavity test system installed at the
Accelerator Test Facility 2 (ATF2) at KEK in Japan. We demonstrate that the PCA
based method can be used to extract beam position information, and matches
conventional techniques in terms of performance, while requiring considerably
less settings and data for calibration
Quasi-dark Mode in a Metamaterial for Analogous Electromagnetically-induced Transparency
We study a planar metamaterial supporting electromagnetically-induced
transparency (EIT)-like effect by exploiting the coupling between bright and
quasi-dark eigenmodes. The specific design of such a metamaterial consists of a
cut-wire (CW) and a single-gap split-ring resonator (SRR). From the numerical
and the analytical results we demonstrate that the response of SRR, which is
weakly excited by external electric field, is mitigated to be a quasi-dark
eigenmode in the presence of strongly radiative CW. This result suggests more
relaxed conditions for the realization of devices utilizing the EIT-like
effects in metamaterial, and thereby widens the possibilities for many
different structural implementations.Comment: 11 pages, 4 figure
- …