57,206 research outputs found

    Late time evolution of brane gas cosmology and compact internal dimensions

    Full text link
    We study the late-time behavior of a universe in the framework of brane gas cosmology. We investigate the evolution of a universe with a gas of supergravity particles and a gas of branes. Considering the case when different dimensions are anisotropically wrapped by various branes, we have derived Friedman-like equations governing the dynamics of wrapped and unwrapped subvolumes. We point out that the compact internal dimensions are wrapped by three or higher dimensional branes.Comment: 16 pages, typos, references, comment on the possibility of stabilizing the internal dimensions with fluxe

    TeV leptogenesis in Z-prime models and its collider probe

    Full text link
    We show that the U(1)-prime models linked with the seesaw mechanism at TeV scale can lead to a successful baryogenesis through soft leptogenesis with a resonant behavior in the B parameter. Such a consideration constrains the Z-prime mass to be larger than 2-3 TeV depending on the seesaw scale and the spharelon rate. Together with multi-TeV Z-prime, large sneutrino-antisneutrino mixing and CP violating phenomena required by TeV leptogenesis could be searched for in future colliders by observing the distinct same-sign dilepton--dichargino as well as dislepton--diHiggs signatures.Comment: 10 pages with 2 figure

    p-wave Feshbach molecules

    Full text link
    We have produced and detected molecules using a p-wave Feshbach resonance between 40K atoms. We have measured the binding energy and lifetime for these molecules and we find that the binding energy scales approximately linearly with magnetic field near the resonance. The lifetime of bound p-wave molecules is measured to be 1.0 +/- 0.1 ms and 2.3 +/- 0.2 ms for the m_l = +/- 1 and m_l = 0 angular momentum projections, respectively. At magnetic fields above the resonance, we detect quasi-bound molecules whose lifetime is set by the tunneling rate through the centrifugal barrier

    Magnetization distribution and orbital moment in the non-Superconducting Chalcogenide Compound K0.8Fe1.6Se2

    Get PDF
    We have used polarized and unpolarized neutron diffraction to determine the spatial distribution of the magnetization density induced by a magnetic field of 9 T in the tetragonal phase of K0.8Fe1.6Se2. The maximum entropy reconstruction shows clearly that most of the magnetization is confined to the region around the iron atoms whereas there is no significant magnetization associated with either Se or K atoms. The distribution of magnetization around the Fe atom is slightly nonspherical with a shape which is extended along the [0 0 1] direction in the projection. Multipolar refinement results show that the electrons which give rise to the paramagnetic susceptibility are confined to the Fe atoms and their distribution suggests that they occupy 3d t2g-type orbitals with around 66% in those of xz/yz symmetry. Detail modeling of the magnetic form factor indicates the presence of an orbital moment to the total paramagnetic moment of Fe2+Comment: 7 pages, accepted for publication in Physical Review

    Cross-Dimensional relaxation in Bose-Fermi mixtures

    Full text link
    We consider the equilibration rate for fermions in Bose-Fermi mixtures undergoing cross-dimensional rethermalization. Classical Monte Carlo simulations of the relaxation process are performed over a wide range of parameters, focusing on the effects of the mass difference between species and the degree of initial departure from equilibrium. A simple analysis based on Enskog's equation is developed and shown to be accurate over a variety of different parameter regimes. This allows predictions for mixtures of commonly used alkali atoms.Comment: 7 pages, 4 figures, uses Revtex 4. This is a companion paper to [PRA 70, 021601(R) (2004)] (cond-mat/0405419

    Effect of pooling samples on the efficiency of comparative studies using microarrays

    Full text link
    Many biomedical experiments are carried out by pooling individual biological samples. However, pooling samples can potentially hide biological variance and give false confidence concerning the data significance. In the context of microarray experiments for detecting differentially expressed genes, recent publications have addressed the problem of the efficiency of sample-pooling, and some approximate formulas were provided for the power and sample size calculations. It is desirable to have exact formulas for these calculations and have the approximate results checked against the exact ones. We show that the difference between the approximate and exact results can be large. In this study, we have characterized quantitatively the effect of pooling samples on the efficiency of microarray experiments for the detection of differential gene expression between two classes. We present exact formulas for calculating the power of microarray experimental designs involving sample pooling and technical replications. The formulas can be used to determine the total numbers of arrays and biological subjects required in an experiment to achieve the desired power at a given significance level. The conditions under which pooled design becomes preferable to non-pooled design can then be derived given the unit cost associated with a microarray and that with a biological subject. This paper thus serves to provide guidance on sample pooling and cost effectiveness. The formulation in this paper is outlined in the context of performing microarray comparative studies, but its applicability is not limited to microarray experiments. It is also applicable to a wide range of biomedical comparative studies where sample pooling may be involved.Comment: 8 pages, 1 figure, 2 tables; to appear in Bioinformatic

    Magnetic structure of the Eu2+ moments in superconducting EuFe2(As1-xPx)2 with x = 0.19

    Get PDF
    The magnetic structure of the Eu2+ moments in the superconducting EuFe2(As1-xPx)2 sample with x = 0.19 has been determined using neutron scattering. We conclude that the Eu2+ moments are aligned along the c direction below T_C = 19.0(1) K with an ordered moment of 6.6(2) mu_B in the superconducting state. An impurity phase similar to the underdoped phase exists within the bulk sample which orders antiferromagnetically below T_N = 17.0(2) K. We found no indication of iron magnetic order, nor any incommensurate magnetic order of the Eu2+ moments in the sample.Comment: Accepted for publication in Phys. Rev. B (regular article
    • …
    corecore