76,299 research outputs found

    Probabilistic teleportation of unknown two-particle state via POVM

    Full text link
    We propose a scheme for probabilistic teleportation of unknown two-particle state with partly entangled four-particle state via POVM. In this scheme the teleportation of unknown two-particle state can be realized with certain probability by performing two Bell state measurements, a proper POVM and a unitary transformation.Comment: 5 pages, no figur

    Critical exponents of the driven elastic string in a disordered medium

    Full text link
    We analyze the harmonic elastic string driven through a continuous random potential above the depinning threshold. The velocity exponent beta = 0.33(2) is calculated. We observe a crossover in the roughness exponent zeta from the critical value 1.26 to the asymptotic (large force) value of 0.5. We calculate directly the velocity correlation function and the corresponding correlation length exponent nu = 1.29(5), which obeys the scaling relation nu = 1/(2-zeta), and agrees with the finite-size-scaling exponent of fluctuations in the critical force. The velocity correlation function is non-universal at short distances.Comment: 4 pages, 3 figures. corrected references and typo

    Molecular gas in extreme star-forming environments: the starbursts Arp220 and NGC6240 as case studies

    Full text link
    We report single-dish multi-transition measurements of the 12^CO, HCN, and HCO^+ molecular line emission as well as HNC J=1-0 and HNCO in the two ultraluminous infra-red galaxies Arp220 and NGC6240. Using this new molecular line inventory, in conjunction with existing data in the literature, we compiled the most extensive molecular line data sets to date for such galaxies. The many rotational transitions, with their different excitation requirements, allow the study of the molecular gas over a wide range of different densities and temperatures with significant redundancy, and thus allow good constraints on the properties of the dense gas in these two systems. The mass (~(1-2) x 10^10 Msun) of dense gas (>10^5-6 cm^-3) found accounts for the bulk of their molecular gas mass, and is consistent with most of their IR luminosities powered by intense star bursts while self-regulated by O,B star cluster radiative pressure onto the star-forming dense molecular gas. The highly excited HCN transitions trace a gas phase ~(10-100)x denser than that of the sub-thermally excited HCO^+ lines (for both galaxies). These two phases are consistent with an underlying density-size power law found for Galactic GMCs (but with a steeper exponent), with HCN lines tracing denser and more compact regions than HCO^+. Whether this is true in IR-luminous, star forming galaxies in general remains to be seen, and underlines the need for observations of molecular transitions with high critical densities for a sample of bright (U)LIRGs in the local Universe -- a task for which the HI-FI instrument on board Herschel is ideally suited to do.Comment: 38 pages (preprint ApJ style), 3 figures, accepted for Ap

    Magnetic influence on the frequency of the soft-phonon mode in the incipient ferroelectric EuTiO3

    Full text link
    The dielectric constant of the incipient ferroelectric EuTiO3_3 exhibits a sharp decrease at about 5.5K, at which temperature antiferromagnetic ordering of the Eu spins simultaneously appears, indicating coupling between the magnetism and dielectric properties. This may be attributed to the modification of the soft-phonon mode, T1μT_{1\mu}, which is the main contribution to the large dielectric constant, by the Eu spins(7μB\mu_B per Eu). By adding the coupling term between the magnetic and electrical subsystems as gl<i,jql2SiSj -g\sum\limits_l {\sum\limits_{< {i,j}} {q_l^2}} \overrightarrow {S_i} \cdot \overrightarrow {S_j} we show that the variation of the frequency of soft-phonon mode depends on the spin correlation between the nearest neighbors Eu spins and is substantially changed under a magnetic field.Comment: 13 pages, 4 figure

    On the Triality Theory for a Quartic Polynomial Optimization Problem

    Full text link
    This paper presents a detailed proof of the triality theorem for a class of fourth-order polynomial optimization problems. The method is based on linear algebra but it solves an open problem on the double-min duality left in 2003. Results show that the triality theory holds strongly in a tri-duality form if the primal problem and its canonical dual have the same dimension; otherwise, both the canonical min-max duality and the double-max duality still hold strongly, but the double-min duality holds weakly in a symmetrical form. Four numerical examples are presented to illustrate that this theory can be used to identify not only the global minimum, but also the largest local minimum and local maximum.Comment: 16 pages, 1 figure; J. Industrial and Management Optimization, 2011. arXiv admin note: substantial text overlap with arXiv:1104.297

    Modeling the Optical Afterglow of GRB 030329

    Full text link
    The best-sampled afterglow light curves are available for GRB 030329. A distinguishing feature of this event is the obvious rebrightening at around 1.6 days after the burst. Proposed explanations for the rebrightening mainly include the two-component jet model and the refreshed shock model, although a sudden density-jump in the circumburst environment is also a potential choice. Here we re-examine the optical afterglow of GRB 030329 numerically in light of the three models. In the density-jump model, no obvious rebrightening can be produced at the jump moment. Additionally, after the density jump, the predicted flux density decreases rapidly to a level that is significantly below observations. A simple density-jump model thus can be excluded. In the two-component jet model, although the observed late afterglow (after 1.6 days) can potentially be explained as emission from the wide-component, the emergence of this emission actually is too slow and it does not manifest as a rebrightening as previously expected. The energy-injection model seems to be the most preferred choice. By engaging a sequence of energy-injection events, it provides an acceptable fit to the rebrightening at 1.6\sim 1.6 d, as well as the whole observed light curve that extends to 80\sim 80 d. Further studies on these multiple energy-injection processes may provide a valuable insight into the nature of the central engines of gamma-ray bursts.Comment: 18 pages, 3 figures; a few references added and minor word changes; now accepted for publication in Ap
    corecore