42,860 research outputs found

    Tunneling between single and multi-centered black hole configurations

    Full text link
    We find a gravitational instanton that connects an initial state corresponding to a single-centered extremal Reissner-Nordstrom (ERN) black hole configuration, to a final state corresponding to a multi-centered configuration. This instanton is interpreted as describing quantum tunneling between the two different black hole solutions. We evaluate the Euclidean action for this instanton and find that the amplitude for the tunneling process is equal to half the difference in entropy between the initial and final configurations.Comment: 8 pages, 4 figures. v4: final version accepted for publication in Phys. Rev.

    Improved determination of color-singlet nonrelativistic QCD matrix elements for S-wave charmonium

    Full text link
    We present a new computation of S-wave color-singlet nonrelativistic QCD matrix elements for the J/psi and the eta_c. We compute the matrix elements of leading order in the heavy-quark velocity v and the matrix elements of relative order v^2. Our computation is based on the electromagnetic decay rates of the J/psi and the eta_c and on a potential model that employs the Cornell potential. We include relativistic corrections to the electromagnetic decay rates, resumming a class of corrections to all orders in v, and find that they significantly increase the values of the matrix elements of leading order in v. This increase could have important implications for theoretical predictions for a number of quarkonium decay and production processes. The values that we find for the matrix elements of relative order v^2 are somewhat smaller than the values that one obtains from estimates that are based on the velocity-scaling rules of nonrelativistic QCD.Comment: 31 pages, minor corrections, version published in Phys. Rev.

    Erratum: Dynamics and scaling in a quantum spin chain material with bond randomness

    Full text link
    Follow-up neutron measurements, performed on a sample much larger than the one used in the original study, show that in the energy range 0.5-45 meV the magnetic excitations in BaCu2SiGeO7 are indistinguishable from those in conventional (disorder-free) quantum S=1/2 chains. Scrutinizing the previous data, we found that the analysis was affected by a poorly identified structured background and an additional technical mistake in the data reduction.Comment: This is a complete withdrawal of the original paper, also published as in Phys. Rev. Lett 93, 077206 (2004). One page, one figur

    Do Large-Scale Inhomogeneities Explain Away Dark Energy?

    Full text link
    Recently, new arguments (astro-ph/0501152, hep-th/0503117) for how corrections from super-Hubble modes can explain the present-day acceleration of the universe have appeared in the literature. However, in this letter, we argue that, to second order in spatial gradients, these corrections only amount to a renormalization of local spatial curvature, and thus cannot account for the negative deceleration. Moreover, cosmological observations already put severe bounds on such corrections, at the level of a few percent, while in the context of inflationary models, these corrections are typically limited to ~ 10^{-5}. Currently there is no general constraint on the possible correction from higher order gradient terms, but we argue that such corrections are even more constrained in the context of inflationary models.Comment: 4 Pages, no figures. Minor modifications, added reference

    Liquid crystal polyester-carbon fiber composites

    Get PDF
    Liquid crystal polymers (LCP) have been developed as a thermoplastic matrix for high performance composites. A successful melt impregnation method has been developed which results in the production of continuous carbon fiber (CF) reinforced LCP prepreg tape. Subsequent layup and molding of prepreg into laminates has yielded composites of good quality. Tensile and flexural properties of LCP/CF composites are comparable to those of epoxy/CF composites. The LCP/CF composites have better impact resistance than the latter, although epoxy/CF composites possess superior compression and shear strength. The LCP/CF composites have good property retention until 200 F (67 % of room temperature value). Above 200 F, mechanical properties decrease significantly. Experimental results indicate that the poor compression and shear strength may be due to the poor interfacial adhesion between the matrix and carbon fiber as adequate toughness of the LCP matrix. Low mechanical property retention at high temperatures may be attributable to the low beta-transition temperature (around 80 C) of the LCP matrix material
    corecore