43,765 research outputs found

    Green's function method for single-particle resonant states in relativistic mean field theory

    Full text link
    Relativistic mean field theory is formulated with the Green's function method in coordinate space to investigate the single-particle bound states and resonant states on the same footing. Taking the density of states for free particle as a reference, the energies and widths of single-particle resonant states are extracted from the density of states without any ambiguity. As an example, the energies and widths for single-neutron resonant states in 120^{120}Sn are compared with those obtained by the scattering phase-shift method, the analytic continuation in the coupling constant approach, the real stabilization method and the complex scaling method. Excellent agreements are found for the energies and widths of single-neutron resonant states.Comment: 20 pages, 7 figure

    Transfer-matrix renormalization group study of the spin ladders with cyclic four-spin interactions

    Full text link
    The temperature dependence of the specific heat and spin susceptibility of the spin ladders with cyclic four-spin interactions in the rung-singlet phase is explored by making use of the transfer-matrix renormalization group method. The values of spin gap are extracted from the specific heat and susceptibility, respectively. It is found that for different relative strength between interchain and intrachain interactions, the spin gap is approximately linear with the cyclic four-spin interaction in the region far away from the critical point. Furthermore, we show that the dispersion for the one-triplet magnon branch can be obtained by numerically fitting on the partition function.Comment: 7 pages, 7 figures, 1 tabl

    The implications of alternative developer decision-making strategies on land-use and land-cover in an agent-based land market model

    Get PDF
    Land developers play a key role in land-use and land cover change, as\ud they directly make land development decisions and bridge the land and housing\ud markets. Developers choose and purchase land from rural land owners, develop\ud and subdivide land into parcel lots, build structures on lots, and sell houses to residential households. Developers determine the initial landscaping states of developed parcels, affecting the state and future trajectories of residential land cover, as well as land market activity. Despite their importance, developers are underrepresented in land use change models due to paucity of data and knowledge regarding their decision-making. Drawing on economic theories and empirical literature, we have developed a generalized model of land development decision-making within a broader agent-based model of land-use change via land markets. Developer’s strategies combine their specialty in developing of particular subdivision types, their perception of and attitude towards market uncertainty, and their learning and adaptation strategies based on the dynamics of the simulated land and housing markets. We present a new agent-based land market model that includes these elements. The model will be used to experiment with these different development decision-making methods and compare their impacts on model outputs, particularly on the quantity and spatial pattern of resultant land use changes. Coupling between the land market and a carbon sequestration model, developed for the larger SLUCE2 project, will allow us, in future work, to examine how different developer’s strategies will affect the carbon balance in residential\ud landscape

    Thermodynamic properties of tetrameric bond-alternating spin chains

    Full text link
    Thermodynamic properties of a tetrameric bond-alternating Heisenberg spin chain with ferromagnetic-ferromagnetic-antiferromagnetic-antiferromagnetic exchange interactions are studied using the transfer-matrix renormalization group and compared to experimental measurements. The temperature dependence of the uniform susceptibility exhibits typical ferrimagnetic features. Both the uniform and staggered magnetic susceptibilities diverge in the limit T→0T\to 0, indicating that the ground state has both ferromagnetic and antiferromagnetic long-range orders. A double-peak structure appears in the temperature dependence of the specific heat. Our numerical calculation gives a good account for the temperature and field dependence of the susceptibility, the magnetization, and the specific heat for Cu(3-Clpy)2_{2}(N3_{3})2_{2} (3-Clpy=3-Chloroyridine).Comment: 8 pages, 12 figures; Replaced with final version accepted in Phys. Rev.

    Persistent single-photon production by tunable on-chip micromaser with a superconducting quantum circuit

    Full text link
    We propose a tunable on-chip micromaser using a superconducting quantum circuit (SQC). By taking advantage of externally controllable state transitions, a state population inversion can be achieved and preserved for the two working levels of the SQC and, when needed, the SQC can generate a single photon. We can regularly repeat these processes in each cycle when the previously generated photon in the cavity is decaying, so that a periodic sequence of single photons can be produced persistently. This provides a controllable way for implementing a persistent single-photon source on a microelectronic chip.Comment: 8 pages, 4 figure
    • …
    corecore