11,885 research outputs found
Characterization Of Thermal Stresses And Plasticity In Through-Silicon Via Structures For Three-Dimensional Integration
Through-silicon via (TSV) is a critical element connecting stacked dies in three-dimensional (3D) integration. The mismatch of thermal expansion coefficients between the Cu via and Si can generate significant stresses in the TSV structure to cause reliability problems. In this study, the thermal stress in the TSV structure was measured by the wafer curvature method and its unique stress characteristics were compared to that of a Cu thin film structure. The thermo-mechanical characteristics of the Cu TSV structure were correlated to microstructure evolution during thermal cycling and the local plasticity in Cu in a triaxial stress state. These findings were confirmed by microstructure analysis of the Cu vias and finite element analysis (FEA) of the stress characteristics. In addition, the local plasticity and deformation in and around individual TSVs were measured by synchrotron x-ray microdiffraction to supplement the wafer curvature measurements. The importance and implication of the local plasticity and residual stress on TSV reliabilities are discussed for TSV extrusion and device keep-out zone (KOZ).Microelectronics Research Cente
Thermomechanical Characterization And Modeling For TSV Structures
Continual scaling of devices and on-chip wiring has brought significant challenges for materials and processes beyond the 32-nm technology node in microelectronics. Recently, three-dimensional (3-D) integration with through-silicon vias (TSVs) has emerged as an effective solution to meet the future technology requirements. Among others, thermo-mechanical reliability is a key concern for the development of TSV structures used in die stacking as 3-D interconnects. This paper presents experimental measurements of the thermal stresses in TSV structures and analyses of interfacial reliability. The micro-Raman measurements were made to characterize the local distribution of the near-surface stresses in Si around TSVs. On the other hand, the precision wafer curvature technique was employed to measure the average stress and deformation in the TSV structures subject to thermal cycling. To understand the elastic and plastic behavior of TSVs, the microstructural evolution of the Cu vias was analyzed using focused ion beam (FIB) and electron backscattering diffraction (EBSD) techniques. Furthermore, the impact of thermal stresses on interfacial reliability of TSV structures was investigated by a shear-lag cohesive zone model that predicts the critical temperatures and critical via diameters.Microelectronics Research Cente
Grid-based scan-to-map matching for accurate 2D map building
© 2016 Taylor & Francis and The Robotics Society of Japan. This paper presents a grid-based scan-to-map matching technique for accurate 2D map building. At every acquisition of a new scan, the proposed technique matches the new scan to the previous scan similarly to the conventional techniques, but further corrects the error by matching the new scan to the globally defined map. In order to achieve best scan-to-map matching at each acquisition, the map is represented as a grid map with multiple normal distributions (NDs) in each cell, which is one contribution of this paper. Additionally, the new scan is also represented by NDs, developing a novel ND-to-ND matching technique. This ND-to-ND matching technique has significant potential in the enhancement of the global matching as well as the computational efficiency. Experimental results first show that the proposed technique accumulates very small errors after consecutive matchings and identifies that the scans are matched better to the map with the multi-ND representation than one ND representation. The proposed technique is then tested in a number of large indoor environments, including public domain datasets and the applicability to real world problems is demonstrated
A Multi-dimensional Code for Isothermal Magnetohydrodynamic Flows in Astrophysics
We present a multi-dimensional numerical code to solve isothermal
magnetohydrodynamic (IMHD) equations for use in modeling astrophysical flows.
First, we have built a one-dimensional code which is based on an explicit
finite-difference method on an Eulerian grid, called the total variation
diminishing (TVD) scheme. Recipes for building the one-dimensional IMHD code,
including the normalized right and left eigenvectors of the IMHD Jacobian
matrix, are presented. Then, we have extended the one-dimensional code to a
multi-dimensional IMHD code through a Strang-type dimensional splitting. In the
multi-dimensional code, an explicit cleaning step has been included to
eliminate non-zero at every time step. To estimate the
proformance of the code, one- and two-dimensional IMHD shock tube tests, and
the decay test of a two-dimensional Alfv\'{e}n wave have been done. As an
example of astrophysical applications, we have simulated the nonlinear
evolution of the two-dimensional Parker instability under a uniform gravity.Comment: Accepted for publication in ApJ, using aaspp4.sty, 22 text pages with
10 figure
Magnetization Jump in a Model for Flux Lattice Melting at Low Magnetic Fields
Using a frustrated XY model on a lattice with open boundary conditions, we
numerically study the magnetization change near a flux lattice melting
transition at low fields. In both two and three dimensions, we find that the
melting transition is followed at a higher temperature by the onset of large
dissipation associated with the zero-field XY transition. It is characterized
by the proliferation of vortex-antivortex pairs (in 2D) or vortex loops (in
3D). At the upper transition, there is a sharp increase in magnetization, in
qualitative agreement with recent local Hall probe experiments.Comment: updated figures and texts. new movies available at
http://www.physics.ohio-state.edu:80/~ryu/jj.html. Accepted for publication
in Physical Review Letter
An Optical-Lattice-Based Quantum Simulator For Relativistic Field Theories and Topological Insulators
We present a proposal for a versatile cold-atom-based quantum simulator of
relativistic fermionic theories and topological insulators in arbitrary
dimensions. The setup consists of a spin-independent optical lattice that traps
a collection of hyperfine states of the same alkaline atom, to which the
different degrees of freedom of the field theory to be simulated are then
mapped. We show that the combination of bi-chromatic optical lattices with
Raman transitions can allow the engineering of a spin-dependent tunneling of
the atoms between neighboring lattice sites. These assisted-hopping processes
can be employed for the quantum simulation of various interesting models,
ranging from non-interacting relativistic fermionic theories to topological
insulators. We present a toolbox for the realization of different types of
relativistic lattice fermions, which can then be exploited to synthesize the
majority of phases in the periodic table of topological insulators.Comment: 24 pages, 6 figure
First-Order Melting of a Moving Vortex Lattice: Effects of Disorder
We study the melting of a moving vortex lattice through numerical simulations
with the current driven 3D XY model with disorder. We find that there is a
first-order phase transition even for large disorder when the corresponding
equilibrium transition is continuous. The low temperature phase is an
anisotropic moving glass.Comment: Important changes from original version. Finite size analysis of
results has been added. Figure 2 has been changed. There is a new additional
Figure. To be published in Physical Review Letter
- …