79,854 research outputs found
Probabilistic teleportation of unknown two-particle state via POVM
We propose a scheme for probabilistic teleportation of unknown two-particle
state with partly entangled four-particle state via POVM. In this scheme the
teleportation of unknown two-particle state can be realized with certain
probability by performing two Bell state measurements, a proper POVM and a
unitary transformation.Comment: 5 pages, no figur
ILC Operating Scenarios
The ILC Technical Design Report documents the design for the construction of
a linear collider which can be operated at energies up to 500 GeV. This report
summarizes the outcome of a study of possible running scenarios, including a
realistic estimate of the real time accumulation of integrated luminosity based
on ramp-up and upgrade processes. The evolution of the physics outcomes is
emphasized, including running initially at 500 GeV, then at 350 GeV and 250
GeV. The running scenarios have been chosen to optimize the Higgs precision
measurements and top physics while searching for evidence for signals beyond
the standard model, including dark matter. In addition to the certain precision
physics on the Higgs and top that is the main focus of this study, there are
scientific motivations that indicate the possibility for discoveries of new
particles in the upcoming operations of the LHC or the early operation of the
ILC. Follow-up studies of such discoveries could alter the plan for the
centre-of-mass collision energy of the ILC and expand the scientific impact of
the ILC physics program. It is envisioned that a decision on a possible energy
upgrade would be taken near the end of the twenty year period considered in
this report
On the Triality Theory for a Quartic Polynomial Optimization Problem
This paper presents a detailed proof of the triality theorem for a class of
fourth-order polynomial optimization problems. The method is based on linear
algebra but it solves an open problem on the double-min duality left in 2003.
Results show that the triality theory holds strongly in a tri-duality form if
the primal problem and its canonical dual have the same dimension; otherwise,
both the canonical min-max duality and the double-max duality still hold
strongly, but the double-min duality holds weakly in a symmetrical form. Four
numerical examples are presented to illustrate that this theory can be used to
identify not only the global minimum, but also the largest local minimum and
local maximum.Comment: 16 pages, 1 figure; J. Industrial and Management Optimization, 2011.
arXiv admin note: substantial text overlap with arXiv:1104.297
Realizing quantum controlled phase-flip gate through quantum dot in silicon slow-light photonic crystal waveguide
We propose a scheme to realize controlled phase gate between two single
photons through a single quantum dot in slow-light silicon photonic crystal
waveguide. Enhanced Purcell factor and beta factor lead to high gate fidelity
over broadband frequencies compared to cavity-assisted system. The excellent
physical integration of this silicon photonic crystal waveguide system provides
tremendous potential for large-scale quantum information processing.Comment: 9 pages, 3 figure
Microbubble Cavitation Imaging
Ultrasound cavitation of microbubble contrast agents has a potential for therapeutic applications such as sonothrombolysis (STL) in acute ischemic stroke. For safety, efficacy, and reproducibility of treatment, it is critical to evaluate the cavitation state (moderate oscillations, stable cavitation, and inertial cavitation) and activity level in and around a treatment area. Acoustic passive cavitation detectors (PCDs) have been used to this end but do not provide spatial information. This paper presents a prototype of a 2-D cavitation imager capable of producing images of the dominant cavitation state and activity level in a region of interest. Similar to PCDs, the cavitation imaging described here is based on the spectral analysis of the acoustic signal radiated by the cavitating microbubbles: ultraharmonics of the excitation frequency indicate stable cavitation, whereas elevated noise bands indicate inertial cavitation; the absence of both indicates moderate oscillations. The prototype system is a modified commercially available ultrasound scanner with a sector imaging probe. The lateral resolution of the system is 1.5 mm at a focal depth of 3 cm, and the axial resolution is 3 cm for a therapy pulse length of 20 mu s. The maximum frame rate of the prototype is 2 Hz. The system has been used for assessing and mapping the relative importance of the different cavitation states of a microbubble contrast agent. In vitro (tissue-mimicking flow phantom) and in vivo (heart, liver, and brain of two swine) results for cavitation states and their changes as a function of acoustic amplitude are presented
Molecular gas in extreme star-forming environments: the starbursts Arp220 and NGC6240 as case studies
We report single-dish multi-transition measurements of the 12^CO, HCN, and
HCO^+ molecular line emission as well as HNC J=1-0 and HNCO in the two
ultraluminous infra-red galaxies Arp220 and NGC6240. Using this new molecular
line inventory, in conjunction with existing data in the literature, we
compiled the most extensive molecular line data sets to date for such galaxies.
The many rotational transitions, with their different excitation requirements,
allow the study of the molecular gas over a wide range of different densities
and temperatures with significant redundancy, and thus allow good constraints
on the properties of the dense gas in these two systems. The mass (~(1-2) x
10^10 Msun) of dense gas (>10^5-6 cm^-3) found accounts for the bulk of their
molecular gas mass, and is consistent with most of their IR luminosities
powered by intense star bursts while self-regulated by O,B star cluster
radiative pressure onto the star-forming dense molecular gas. The highly
excited HCN transitions trace a gas phase ~(10-100)x denser than that of the
sub-thermally excited HCO^+ lines (for both galaxies). These two phases are
consistent with an underlying density-size power law found for Galactic GMCs
(but with a steeper exponent), with HCN lines tracing denser and more compact
regions than HCO^+. Whether this is true in IR-luminous, star forming galaxies
in general remains to be seen, and underlines the need for observations of
molecular transitions with high critical densities for a sample of bright
(U)LIRGs in the local Universe -- a task for which the HI-FI instrument on
board Herschel is ideally suited to do.Comment: 38 pages (preprint ApJ style), 3 figures, accepted for Ap
Combining Thesaurus Knowledge and Probabilistic Topic Models
In this paper we present the approach of introducing thesaurus knowledge into
probabilistic topic models. The main idea of the approach is based on the
assumption that the frequencies of semantically related words and phrases,
which are met in the same texts, should be enhanced: this action leads to their
larger contribution into topics found in these texts. We have conducted
experiments with several thesauri and found that for improving topic models, it
is useful to utilize domain-specific knowledge. If a general thesaurus, such as
WordNet, is used, the thesaurus-based improvement of topic models can be
achieved with excluding hyponymy relations in combined topic models.Comment: Accepted to AIST-2017 conference (http://aistconf.ru/). The final
publication will be available at link.springer.co
Multiparty simultaneous quantum identity authentication based on entanglement swapping
We present a multiparty simultaneous quantum identity authentication protocol
based on entanglement swapping. In our protocol, the multi-user can be
authenticated by a trusted third party simultaneously
- …