32 research outputs found

    Multicentred surgical site infection surveillance using partitioning analysis

    Get PDF
    Background: Surgical site infection (SSI) is an ongoing major public health problem throughout the world that increases healthcare costs. Utilizing a methodology that can help clinicians to continuously collect data about SSIs, analyse it and implement the feedback into routine hospital practice has been identified as a top national priority in Japan. Aim: To conduct an intervention study through 'operations research' using partitioning at multiple facilities, and to reduce the incidence and consequences of SSI. Methods: The Setouchi SSI Surveillance Group, which consists of seven institutes, started SSI surveillance in 2006. Until May of 2008, there were four surveillance periods (A-D). In all, 3089 patients underwent gastrointestinal surgery and were followed up for 30 days after their operations. Twenty-six factors that have been reported to be related to SSI were evaluated for all patients. The top three factors from each surveillance period were determined and then actual practice improvements were planned for each subsequent period. Findings: The total SSI occurrence was 6.9% for period A, 6.3% for period B, 6.4% for period C and 3.9% for period D. Comparing periods A and D, there was a statistical significance in the decrease of SSI occurrence (P = 0.012). Conclusion: Using the results and partitioning analysis of active SSI surveillance to contribute to action plans for improving clinical practice was effective in significantly reducing SSIs

    Familial amyloid precursor protein mutants cause caspase-6-dependent but amyloid Ξ²-peptide-independent neuronal degeneration in primary human neuron cultures.

    Get PDF
    Although familial Alzheimer disease (AD)-associated autosomal dominant mutants have been extensively studied, little is known about the underlying molecular mechanisms of neurodegeneration induced by these mutants in AD. Wild-type, Swedish or London amyloid precursor protein (APP) transfection in primary human neurons induced neuritic beading, in which several co-expressed proteins, such as enhanced green fluorescent protein, red fluorescent protein (RFP)-tau and RFP-ubiquitin, accumulated. APP-induced neuritic beading was dependent on caspase-6 (Casp6), because it was inhibited with 5 μM z-VEID-fmk or with dominant-negative Casp6. Neuritic beading was independent from APP-mediated amyloid Ξ²-peptide (AΞ²) production, because the APPM596V (APPMV) mutant, which cannot generate AΞ², still induced Casp6-dependent neuritic beading. However, the beaded neurons underwent Casp6- and AΞ²-dependent cell death. These results indicate that overexpression of wild-type or mutant APP causes Casp6-dependent but AΞ²-independent neuritic degeneration in human neurons. Because Casp6 is activated early in AD and is involved in axonal degeneration, these results suggest that the inhibition of Casp6 may represent an efficient early intervention against familial forms of AD. Furthermore, these results indicate that removing AΞ² without inhibiting Casp6 may have little effect in preventing the progressive dementia associated with sporadic or familial AD

    The C. elegans Opa1 Homologue EAT-3 Is Essential for Resistance to Free Radicals

    Get PDF
    The C. elegans eat-3 gene encodes a mitochondrial dynamin family member homologous to Opa1 in humans and Mgm1 in yeast. We find that mutations in the C. elegans eat-3 locus cause mitochondria to fragment in agreement with the mutant phenotypes observed in yeast and mammalian cells. Electron microscopy shows that the matrices of fragmented mitochondria in eat-3 mutants are divided by inner membrane septae, suggestive of a specific defect in fusion of the mitochondrial inner membrane. In addition, we find that C. elegans eat-3 mutant animals are smaller, grow slower, and have smaller broodsizes than C. elegans mutants with defects in other mitochondrial fission and fusion proteins. Although mammalian Opa1 is antiapoptotic, mutations in the canonical C. elegans cell death genes ced-3 and ced-4 do not suppress the slow growth and small broodsize phenotypes of eat-3 mutants. Instead, the phenotypes of eat-3 mutants are consistent with defects in oxidative phosphorylation. Moreover, eat-3 mutants are hypersensitive to paraquat, which promotes damage by free radicals, and they are sensitive to loss of the mitochondrial superoxide dismutase sod-2. We conclude that free radicals contribute to the pathology of C. elegans eat-3 mutants

    G protein betagamma complex-mediated apoptosis by familial Alzheimer's disease mutant of APP.

    No full text
    In familial Alzheimer's disease (FAD), three missense mutations, V642I, V642F and V642G, that co-segregate with the disease phenotype have been discovered in the 695 amino acid form of the amyloid precursor protein APP. Expression of these mutants causes a COS cell NK1 clone to undergo pertussis toxin-sensitive apoptosis in an FAD trait-linked manner by activating the G protein Go, which consists of G alpha(o) and G betagamma subunits. We investigated which subunit was responsible for the induction of apoptosis by V642I APP in NK1 cells. In the same system, expression of mutationally activated G alpha(o) or G alpha(i) induced little apoptosis. Apoptosis by V642I APP was antagonized by the overexpression of the carboxy-terminal amino acids 495-689 of the beta-adrenergic receptor kinase-1, which blocks the specific functions of G betagamma. Co-transfection of G beta2gamma2 cDNAs, but not that of other G beta(x)gamma(z) (x = 1-3; z = 2, 3), induced DNA fragmentation in a manner sensitive to bcl-2. These data implicate G betagamma as a cell death mediator for the FAD-associated mutant of APP

    Feasibility of sequential adjuvant chemotherapy with a 3-month oxaliplatin-based regimen followed by 3 months of capecitabine in patients with stage III and high-risk stage II colorectal cancer: JSWOG-C2 study

    No full text
    Atsushi Tsuruta,1,* Kazuki Yamashita,2,* Hiroaki Tanioka,3 Akihito Tsuji,4,5 Michio Inukai,6 Toshiki Yamakawa,7 Tomoki Yamatsuji,8 Masanori Yoshimitsu,9 Kazuhiro Toyota,10 Taketoshi Yamano,11 Takeshi Nagasaka,12 Masazumi Okajima13 On behalf of the Japan Southwest Oncology Group (JSWOG) 1Department of Digestive Surgery, Kawasaki Medical School Hospital, 2Department of Surgery, 3Department of Medical Oncology, Okayama Rosai Hospital, Okayama, 4Department of Medical Oncology, Kobe City Medical Center General Hospital, Kobe, 5Department of Clinical Oncology, Faculty of Medicine, Kagawa University Hospital, Kagawa, 6Department of Medicine, Okayama Saiseikai General Hospital, Okayama, 7Department of Surgery, Kagawa Prefectural Central Hospital, Takamatsu, 8Department of General Surgery, Kawasaki Medical School, Okayama, 9Department of Surgery, Hiroshima City Asa Hospital, Hiroshima, 10Department of Surgery, National Hospital Organization Higashihirosima Medical Center, Higashihiroshima, 11Department of Surgery, Kurashiki Medical Center, 12Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 13Department of Surgery, Hiroshima City Hospital, Hiroshima, Japan *These authors contributed equally to this work Background: Six months of oxaliplatin-based chemotherapy is the standard adjuvant chemotherapy for completely resected stage III colorectal cancer (CRC). Also, patients with stage II CRC who are considered to be at high risk of disease recurrence often receive the same adjuvant chemotherapy treatment. We prospectively investigated the extent and degree of neuropathy suffered by stage III and high-risk stage II resectable CRC patients who underwent sequential approach involving 3 months of an oxaliplatin-based regimen followed by 3 months of capecitabine. Patients and methods: Patients with completely resected stage III and high-risk stage II CRC aged ≥20 years were eligible. Patients were treated with folinic acid, fluorouracil, and oxaliplatin (FOLFOX) or capecitabine and oxaliplatin (CAPOX) for 3 months followed by capecitabine (2,500 mg/m2 on days 1–14 every 3 weeks) for 3 months. Primary end points were frequency and the grade of oxaliplatin-induced neurotoxicity as evaluated using the physician-based Common Terminology Criteria for Adverse Events version 4.0 (CTCAE) grading and the patient-based scale, self-reported Patient Neurotoxicity Questionnaire. Results: Ninety-one patients were enrolled and 86 patients assessed. Eighty-four percent of patients completed the planned oxaliplatin-based therapy for 3 months, and 63% of patients completed all treatments for the full 6 months. Overall incidences of grade 3 or 4 peripheral sensory or motor neuropathy according to the CTCAE were 3.5% and 1.2%, respectively. Regarding the peripheral sensory neuropathy, the proportion of Patient Neurotoxicity Questionnaire (grade C–E) and CTCAE (grade 2–4) at months 1.5/3/6 were 11.3/22.1/29.4% and 5.3/4.4/11.3%, respectively (Spearman correlation coefficient: 0.47). Conclusion: A sequential approach to adjuvant chemotherapy with 3 months of an oxaliplatin-based regimen followed by 3 months of capecitabine was tolerated by patients and associated with a low incidence of neuropathy. Keywords: oxaliplatin, peripheral neurotoxicity, adjuvant chemotherapy, Patient Neurotoxicity Questionnair
    corecore