75 research outputs found

    Giant water clusters: where are they from?

    Full text link
    A new mechanism for the formation and destruction of giant water clusters described in the literature is proposed. We have earlier suggested that the clusters are associates of liquid crystal spheres (LCS), each of which is formed around a seed particle, a micro-crystal of sodium chloride. In this paper, we show that the ingress of LCS in water from the surrounding air is highly likely. When a certain threshold of the ionic strength of a solution is exceeded (for example, in the process of evaporation of a portion of water), the LCS begin to melt, passing into free water, and the salt crystals dissolve, ensuring re-growth of larger crystals as a precipitate on the substrate. A schematic diagram of the dynamics of phase transitions in water containing LCS during evaporation is proposed.Comment: 9 pages, 9 figures, 29 reference

    Spacial and temporal dynamics of the volume fraction of the colloidal particles inside a drying sessile drop

    Full text link
    Using lubrication theory, drying processes of sessile colloidal droplets on a solid substrate are studied. A simple model is proposed to describe temporal dynamics both the shape of the drop and the volume fraction of the colloidal particles inside the drop. The concentration dependence of the viscosity is taken into account. It is shown that the final shapes of the drops depend on both the initial volume fraction of the colloidal particles and the capillary number. The results of our simulations are in a reasonable agreement with the published experimental data. The computations for the drops of aqueous solution of human serum albumin (HSA) are presented.Comment: Submitted to EPJE, 7 pages, 8 figure

    Brain Training Game Improves Executive Functions and Processing Speed in the Elderly: A Randomized Controlled Trial

    Get PDF
    The beneficial effects of brain training games are expected to transfer to other cognitive functions, but these beneficial effects are poorly understood. Here we investigate the impact of the brain training game (Brain Age) on cognitive functions in the elderly.Thirty-two elderly volunteers were recruited through an advertisement in the local newspaper and randomly assigned to either of two game groups (Brain Age, Tetris). This study was completed by 14 of the 16 members in the Brain Age group and 14 of the 16 members in the Tetris group. To maximize the benefit of the interventions, all participants were non-gamers who reported playing less than one hour of video games per week over the past 2 years. Participants in both the Brain Age and the Tetris groups played their game for about 15 minutes per day, at least 5 days per week, for 4 weeks. Each group played for a total of about 20 days. Measures of the cognitive functions were conducted before and after training. Measures of the cognitive functions fell into four categories (global cognitive status, executive functions, attention, and processing speed). Results showed that the effects of the brain training game were transferred to executive functions and to processing speed. However, the brain training game showed no transfer effect on any global cognitive status nor attention.Our results showed that playing Brain Age for 4 weeks could lead to improve cognitive functions (executive functions and processing speed) in the elderly. This result indicated that there is a possibility which the elderly could improve executive functions and processing speed in short term training. The results need replication in large samples. Long-term effects and relevance for every-day functioning remain uncertain as yet.UMIN Clinical Trial Registry 000002825

    Beneficial effects of reading aloud and solving simple arithmetic calculations (learning therapy) on a wide range of cognitive functions in the healthy elderly: study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Almost all cognitive functions decline with age. Results of previous studies have shown that cognitive training related to everyday life (reading aloud and solving simple arithmetic calculations), namely learning therapy, can improve two cognitive function (executive functions and processing speed) in elderly people. However, it remains unclear whether learning therapy engenders improvement of various cognitive functions or not. We investigate the impact of learning therapy on various cognitive functions (executive functions, episodic memory, short-term memory, working memory, attention, reading ability, and processing speed) in healthy older adults.</p> <p>Methods</p> <p>We use a single-blinded intervention with two parallel groups (a learning therapy group and a waiting list control group). Testers are blind to the study hypothesis and the group membership of participants. Through an advertisement in local newspaper, 64 healthy older adults are recruited. They will be assigned randomly to a learning therapy group or a waiting list control group. In the learning therapy group, participants are required to perform two cognitive tasks for 6 months: reading Japanese aloud and solving simple calculations. The waiting list group does not participate in the intervention. The primary outcome measure is the Stroop test score: a measure of executive function. Secondary outcome measures are assessments including the following: verbal fluency task, logical memory, first and second names, digit span forward, digit span backward, Japanese reading test, digit cancellation task, digit symbol coding, and symbol search. We assess these outcome measures before and after the intervention.</p> <p>Discussion</p> <p>This report is the first study which investigates the beneficial effects of learning therapy on a wide range of cognitive functions of elderly people. Our study provides sufficient evidence of learning therapy effectiveness. Most cognitive functions, which are correlated strongly with daily life activities, decrease with age. These study results can elucidate effects of cognitive training on elderly people.</p> <p>Trial registration</p> <p>This trial was registered in The University Hospital Medical Information Network Clinical Trials Registry (No. <a href="http://www.clinicaltrials.gov/ct2/show/UMIN000006998">UMIN000006998</a>).</p

    An Analytic Method for Computing the Time-Dependent Electromagnetic Fields in Anisotropic Crystals

    No full text
    A homogeneous non-dispersive anisotropic crystal, characterized by a symmetric positive definite permittivity tensor and a positive constant permeability, is considered. An analytic method for deriving the time-dependent electric and magnetic fields in this anisotropic crystal is suggested in the paper. This method is based on explicit formulae for electric and magnetic fields which are solutions of initial value problems for Maxwell's equations describing the wave propagation in the anisotropic crystal. The suggested method consists in several steps: Maxwell's equations are written in the second-order form in terms of the Fourier modes with respect to space variables; explicit formulae for the Fourier modes of electric and magnetic fields are derived using the matrix transformations and the technique of ordinary differential equations; finally, the inverse Fourier transform is applied to obtained formulae for the Fourier modes

    Application of Symmetric Hyperbolic Systems for the Time-Dependent Maxwell's Equations in Bi-Anisotropic Media

    No full text
    The time-dependent Maxwell's equations in non-dispersive homogeneous bi-anisotropic materials are considered in the paper. These equations are written as a symmetric hyperbolic system. A new method of the computation of the electric and magnetic fields arising from electric current is suggested in the paper. This method consists of the following. The Maxwell's equations are written in terms of the Fourier transform with respect to the space variables. The Fourier image of the obtained system is a system of ordinary differential equations whose coefficients depend on the 3D Fourier parameter. The formula for the solution of the obtained system is derived by the matrix transformations. Finally, the electric and magnetic fields are computed by the inverse Fourier transform. Using this formula the computation of the electric and magnetic fields has been made for the case when the current is a polarized dipole
    corecore