134 research outputs found

    Effective mass and band nonparabolicity in remote doped Si/Si0.8Ge0.2 quantum wells

    Get PDF
    The effective masses in remote doped Si/Si0.8Ge0.2/Si quantum wells having sheet densities, Ns in the range 2 × 1011–1.1 × 1012 cm – 2 have been determined from the temperature dependencies of the Shubnikov–de Haas oscillations. The values obtained increase with magnetic field and Ns. This behavior is taken as evidence for the nonparabolicity of the valence band and accounts for the discrepancies in previously reported masses. Self-consistent band structure calculations for a triangular confinement of the carriers have also been carried out and provide confirmation of the increase in mass with Ns. Theory and experiment give extrapolated Gamma point effective masses of 0.21 and 0.20 of the free-electron mass, respectively

    Serenity as a Goal for Nursing Practice

    Full text link
    To extend a conceptual analysis of serenity by explaining how serenity develops and to present an analysis of serenity interventions. Significance : Serenity is highly desired by many. There is evidence that the experience of serenity improves health. The information presented proposes how nurses can use knowledge about serenity in practice. Organizing Framework : Serenity is viewed as a learned, positive emotion of inner peace that can be sustained. It is a spiritual concept that decreases perceived stress and improves physical and emotional health. Sources and Approach : Results of a conceptual analysis of serenity, research findings related to development of a Serenity Scale, practice experience, and the literature provided a foundation for the analysis. Inductive reasoning and substruction were the primary methods of constructing the proposed relationships. A nursing practice example is included. Conclusions : The experience of serenity is related to development of the higher self. Four levels of serenity are a safe, wise, beneficent, and universal self. Knowledge about serenity can help nurses to select interventions that promote clients' health.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72835/1/j.1547-5069.1996.tb00388.x.pd

    Terrace grading of SiGe for high-quality virtual substrates

    Get PDF
    Silicon germanium (SiGe) virtual substrates of final germanium composition x = 0.50 have been fabricated using solid-source molecular beam epitaxy with a thickness of 2 µm. A layer structure that helps limit the size of dislocation pileups associated with the modified Frank–Read dislocation multiplication mechanism has been studied. It is shown that this structure can produce lower threading dislocation densities than conventional linearly graded virtual substrates. Cross-sectional transmission electron microscopy shows the superior quality of the dislocation network in the graded regions with a lower rms roughness shown by atomic force microscopy. X-ray diffractometry shows these layers to be highly relaxed. This method of Ge grading suggests that high-quality virtual substrates can be grown considerably thinner than with conventional grading methods

    Direct evidence for a piezoelectriclike effect in coherently strained SiGe/Si heterostructures

    Get PDF
    A hybrid acoustic spectroscopy technique has been used to demonstrate the (reversible) conversion of high frequency electric fields into longitudinal acoustic waves within a modulation-doped pseudomorphic Si/Si0.88Ge0.12/Si heterostructure. This provides compelling evidence for the existence of a piezoelectriclike coupling within such structures

    Extremely high room-temperature two-dimensional hole gas mobility in Ge/Si0.33Ge0.67/Si(001) p-type modulation-doped heterostructures

    Get PDF
    To extract the room-temperature drift mobility and sheet carrier density of two-dimensional hole gas (2DHG) that form in Ge strained channels of various thicknesses in Ge/Si0.33Ge0.67/Si(001) p-type modulation-doped heterostructures, the magnetic field dependences of the magnetoresistance and Hall resistance at temperature of 295 K were measured and the technique of maximum entropy mobility spectrum analysis was applied. This technique allows a unique determination of mobility and sheet carrier density of each group of carriers present in parallel conducting multilayers semiconductor heterostructures. Extremely high room-temperature drift mobility (at sheet carrier density) of 2DHG 2940 cm2 V–1 s–1 (5.11×1011 cm–2) was obtained in a sample with a 20 nm thick Ge strained channel

    Coulomb blockade in silicon based structures at temperatures up to 50 K

    Get PDF
    Coulomb blockade has been observed in the current-voltage characteristics of structures fabricated in silicon germanium delta-doped material at temperatures up to 50 K. This is consistent with the estimated effective tunnel capacitance of 10 aF which is significantly smaller than the reported capacitances of tunnel junctions made from Al or GaAs/AlGaAs heterostructures

    Very high two-dimensional hole gas mobilities in strained silicon germanium

    Get PDF
    We report on the growth by solid source MBE and characterization of remote doped Si/SiGe/Si two-dimensional hole gas structures. It has been found that by reducing the Ge composition to <=13% and limiting the thickness of the alloy layer, growth temperatures can be increased up to 950 °C for these structures while maintaining good structural integrity and planar interfaces. Record mobilities of 19 820 cm2 V−1 s−1 at 7 K were obtained in normal structures. Our calculations suggest that alloy scattering is not important in these structures and that interface roughness and interface charge scattering limit the low temperature mobilities

    Growth studies on Si0.8Ge0.2 channel two-dimensional hole gases

    Get PDF
    We report a study of the influences of MBE conditions on the low-temperature mobilities of Si/Si0.8Ge0.2 2DHG structures. A significant dependence of 2DHG mobility on growth temperature is observed with the maximum mobility of 3640 cm2 V−1 s−1 at 5.4 K being achieved at the relatively high-growth temperature of 640 °C. This dependence is associated with a reduction in interface charge density. Studies on lower mobility samples show that Cu contamination can be reduced both by growth interruptions and by modifications to the Ge source; this reduction produces improvements in the low-temperature mobilities. We suggest that interface charge deriving from residual metal contamination is currently limiting the 4-K mobility

    Reduced 1/f noise in p-Si0.3Ge0.7 metamorphic metal–oxide–semiconductor field-effect transistor

    Get PDF
    We have demonstrated reduced 1/f low-frequency noise in sub-µm metamorphic high Ge content p-Si0.3Ge0.7 metal–oxide–semiconductor field-effect transistors (MOSFETs) at 293 K. Three times lower normalized power spectral density (NPSD) SID/ID2 of drain current fluctuations over the 1–100 Hz range at VDS = –50 mV and VG–Vth = –1.5 V was measured for a 0.55 µm effective gate length p-Si0.3Ge0.7 MOSFET compared with a p-Si MOSFET. Performed quantitative analysis clearly demonstrates the importance of carrier number fluctuations and correlated mobility fluctuations (CMFs) components of 1/f noise for p-Si surface channel MOSFETs, and the absence of CMFs for p-Si0.3Ge0.7 buried channel MOSFETs. This explains the reduced NPSD for p-Si0.3Ge0.7 MOSFETs in strong inversion
    • …
    corecore