14,296 research outputs found

    Recirculation patterns in the initial region of coaxial jets

    Get PDF
    Initial region study of turbulent coaxial jet flo

    Experimental investigation of turbulence in the mixing region between coaxial streams

    Get PDF
    Mixing of turbulent, incompressible, coaxial stream

    Excitation Thresholds for Nonlinear Localized Modes on Lattices

    Full text link
    Breathers are spatially localized and time periodic solutions of extended Hamiltonian dynamical systems. In this paper we study excitation thresholds for (nonlinearly dynamically stable) ground state breather or standing wave solutions for networks of coupled nonlinear oscillators and wave equations of nonlinear Schr\"odinger (NLS) type. Excitation thresholds are rigorously characterized by variational methods. The excitation threshold is related to the optimal (best) constant in a class of discr ete interpolation inequalities related to the Hamiltonian energy. We establish a precise connection among dd, the dimensionality of the lattice, 2σ+12\sigma+1, the degree of the nonlinearity and the existence of an excitation threshold for discrete nonlinear Schr\"odinger systems (DNLS). We prove that if σ≥2/d\sigma\ge 2/d, then ground state standing waves exist if and only if the total power is larger than some strictly positive threshold, νthresh(σ,d)\nu_{thresh}(\sigma, d). This proves a conjecture of Flach, Kaldko& MacKay in the context of DNLS. We also discuss upper and lower bounds for excitation thresholds for ground states of coupled systems of NLS equations, which arise in the modeling of pulse propagation in coupled arrays of optical fibers.Comment: To appear in Nonlinearit

    Stability of shear flow with density gradient and viscosity

    Get PDF
    Stability of shear flow with density gradient and viscosit

    Fission-gas-release rates from irradiated uranium nitride specimens

    Get PDF
    Fission-gas-release rates from two 93 percent dense UN specimens were measured using a sweep gas facility. Specimen burnup rates averaged .0045 and .0032 percent/hr, and the specimen temperatures ranged from 425 to 1323 K and from 552 to 1502 K, respectively. Burnups up to 7.8 percent were achieved. Fission-gas-release rates first decreased then increased with burnup. Extensive interconnected intergranular porosity formed in the specimen operated at over 1500 K. Release rate variation with both burnup and temperature agreed with previous irradiation test results

    Four-dimensional symplectic cobordisms containing three-handles

    Full text link
    We construct four-dimensional symplectic cobordisms between contact three-manifolds generalizing an example of Eliashberg. One key feature is that any handlebody decomposition of one of these cobordisms must involve three-handles. The other key feature is that these cobordisms contain chains of symplectically embedded two-spheres of square zero. This, together with standard gauge theory, is used to show that any contact three-manifold of non-zero torsion (in the sense of Giroux) cannot be strongly symplectically fillable. John Etnyre pointed out to the author that the same argument together with compactness results for pseudo-holomorphic curves implies that any contact three-manifold of non-zero torsion satisfies the Weinstein conjecture. We also get examples of weakly symplectically fillable contact three-manifolds which are (strongly) symplectically cobordant to overtwisted contact three-manifolds, shedding new light on the structure of the set of contact three-manifolds equipped with the strong symplectic cobordism partial order.Comment: This is the version published by Geometry & Topology on 28 October 200

    Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip

    Get PDF
    Optical microcavities confine light spatially and temporally and find application in a wide range of fundamental and applied studies. In many areas, the microcavity figure of merit is not only determined by photon lifetime (or the equivalent quality-factor, Q), but also by simultaneous achievement of small mode volume V . Here we demonstrate ultra-high Q-factor small mode volume toroid microcavities on-a-chip, which exhibit a Q/V factor of more than 106(λ/n)−310^{6}(\lambda/n)^{-3}. These values are the highest reported to date for any chip-based microcavity. A corresponding Purcell factor in excess of 200 000 and a cavity finesse of 2.8×1062.8\times10^{6} is achieved, demonstrating that toroid microcavities are promising candidates for studies of the Purcell effect, cavity QED or biochemical sensingComment: 4 pages, 3 figures, Submitted to Applied Physics Letter

    Observing Gravitational Waves with a Single Detector

    Get PDF
    A major challenge of any search for gravitational waves is to distinguish true astrophysical signals from those of terrestrial origin. Gravitational-wave experiments therefore make use of multiple detectors, considering only those signals which appear in coincidence in two or more instruments. It is unclear, however, how to interpret loud gravitational-wave candidates observed when only one detector is operational. In this paper, we demonstrate that the observed rate of binary black hole mergers can be leveraged in order to make confident detections of gravitational-wave signals with one detector alone. We quantify detection confidences in terms of the probability P(S)P(S) that a signal candidate is of astrophysical origin. We find that, at current levels of instrumental sensitivity, loud signal candidates observed with a single Advanced LIGO detector can be assigned P(S)≳0.4P(S)\gtrsim0.4. In the future, Advanced LIGO may be able to observe single-detector events with confidences exceeding P(S)∼90%P(S)\sim90\%.Comment: 8 pages, 4 figures; published in CQG; minor updates to match published versio

    Template-based Gravitational-Wave Echoes Search Using Bayesian Model Selection

    Get PDF
    The ringdown of the gravitational-wave signal from a merger of two black holes has been suggested as a probe of the structure of the remnant compact object, which may be more exotic than a black hole. It has been pointed out that there will be a train of echoes in the late-time ringdown stage for different types of exotic compact objects. In this paper, we present a template-based search methodology using Bayesian statistics to search for echoes of gravitational waves. Evidence for the presence or absence of echoes in gravitational-wave events can be established by performing Bayesian model selection. The Occam factor in Bayesian model selection will automatically penalize the more complicated model that echoes are present in gravitational-wave strain data because of its higher degree of freedom to fit the data. We find that the search methodology was able to identify gravitational-wave echoes with Abedi et al.'s echoes waveform model about 82.3% of the time in simulated Gaussian noise in the Advanced LIGO and Virgo network and about 61.1% of the time in real noise in the first observing run of Advanced LIGO with ≥5σ\geq 5\sigma significance. Analyses using this method are performed on the data of Advanced LIGO's first observing run, and we find no statistical significant evidence for the detection of gravitational-wave echoes. In particular, we find <1σ<1\sigma combined evidence of the three events in Advanced LIGO's first observing run. The analysis technique developed in this paper is independent of the waveform model used, and can be used with different parametrized echoes waveform models to provide more realistic evidence of the existence of echoes from exotic compact objects.Comment: 16 pages, 6 figure
    • …
    corecore