28 research outputs found

    A Novel Enzymatic System against Oxidative Stress in the Thermophilic Hydrogen-Oxidizing Bacterium Hydrogenobacter thermophilus

    Get PDF
    Rubrerythrin (Rbr) is a non-heme iron protein composed of two distinctive domains and functions as a peroxidase in anaerobic organisms. A novel Rbr-like protein, ferriperoxin (Fpx), was identified in Hydrogenobacter thermophilus and was found not to possess the rubredoxin-like domain that is present in typical Rbrs. Although this protein is widely distributed among aerobic organisms, its function remains unknown. In this study, Fpx exhibited ferredoxin:NADPH oxidoreductase (FNR)-dependent peroxidase activity and reduced both hydrogen peroxide (H2O2) and organic hydroperoxide in the presence of NADPH and FNR as electron donors. The calculated Km and Vmax values of Fpx for organic hydroperoxides were comparable to that for H2O2, demonstrating a multiple reactivity of Fpx towards hydroperoxides. An fpx gene disruptant was unable to grow under aerobic conditions, whereas its growth profiles were comparable to those of the wild-type strain under anaerobic and microaerobic conditions, clearly indicating the indispensability of Fpx as an antioxidant of H. thermophilus in aerobic environments. Structural analysis suggested that domain-swapping occurs in Fpx, and this domain-swapped structure is well conserved among thermophiles, implying the importance of structural stability of domain-swapped conformation for thermal environments. In addition, Fpx was located on a deep branch of the phylogenetic tree of Rbr and Rbr-like proteins. This finding, taken together with the wide distribution of Fpx among Bacteria and Archaea, suggests that Fpx is an ancestral type of Rbr homolog that functions as an essential antioxidant and may be part of an ancestral peroxide-detoxification system

    Impaired Ca²⁺ regulation of CD4⁺CD25⁺ regulatory T cells from pediatric asthma.

    No full text
    BACKGROUND: CD4(+)CD25(+) regulatory T (T(reg)) cells can control the allergic response to allergen, airway eosinophilia and airway hypersensitivity. We speculated that chronic inflammation persisting in asthma airways is dependent on abnormalities of these T(reg) cells. There are differences in the pathology of asthma in adults and children, and the airways of pediatric asthma are considered to be more naive than those of adults. Therefore, we analyzed the functionality of T(reg) cells in pediatric asthma and the relationship between T(reg) function and asthma symptoms. METHODS: The anergic state, which is one of the defining properties of T(reg), was analyzed by measuring intracellular Ca(2+) influx following T cell receptor (TCR) stimulation. FOXP3-positive cells and FOXP3 mRNA expression were measured by flow analysis and real-time PCR with the SYBR method, respectively. RESULTS: CD45RO(+) cells make up approximately 99% of CD4(+)CD25(high) T cells and 89% of CD4(+)CD25(low) T cells in human adult blood. The proportion of CD45RO(+) cells in CD4(+)CD25(+) (high + low) T cells from pediatric asthma was much smaller (about 56%). Interestingly, our data indicated that CD45RO(+) T(reg) cells from pediatric asthma aberrantly increased intracellular Ca(2+) concentrations following TCR activation compared with pediatric nonasthma controls. CONCLUSION: These impaired CD45RO(+) T(reg) cell functions were correlated with asthma symptoms. The correlation was observed in the group with a highly expressed atopic phenotype and longer duration of asthma. We suggest that chronic inflammation in pediatric asthma airways may be the result of impaired regulatory functions of CD45RO(+) T(reg) cells
    corecore