6,085 research outputs found

    The Adelaide VHF radar: Capabilities and future plans

    Get PDF
    The VHF radar at Buckland Park, South Australia commenced operation in January, 1984. The radar is located adjacent to the 2-MHz ionospheric radar. The routine method for measuring horizontal wind velocity is the space antenna technique (SA) while the Doppler technique is used to measure vertical velocities. It is possible to swing the transmitting beam in the east-west plane, allowing Doppler measurements of the EW wind component

    Selective spin coupling through a single exciton

    Get PDF
    We present a novel scheme for performing a conditional phase gate between two spin qubits in adjacent semiconductor quantum dots through delocalized single exciton states, formed through the inter-dot Foerster interaction. We consider two resonant quantum dots, each containing a single excess conduction band electron whose spin embodies the qubit. We demonstrate that both the two-qubit gate, and arbitrary single-qubit rotations, may be realized to a high fidelity with current semiconductor and laser technology.Comment: 5 pages, 3 figures; published version, equation formatting improved, references adde

    BATSE Gamma-Ray Burst Line Search: V. Probability of Detecting a Line in a Burst

    Full text link
    The physical importance of the apparent discrepancy between the detections by pre-BATSE missions of absorption lines in gamma-ray burst spectra and the absence of a BATSE line detection necessitates a statistical analysis of this discrepancy. This analysis requires a calculation of the probability that a line, if present, will be detected in a given burst. However, the connection between the detectability of a line in a spectrum and in a burst requires a model for the occurrence of a line within a burst. We have developed the necessary weighting for the line detection probability for each spectrum spanning the burst. The resulting calculations require a description of each spectrum in the BATSE database. With these tools we identify the bursts in which lines are most likely to be detected. Also, by assuming a small frequency with which lines occur, we calculate the approximate number of BATSE bursts in which lines of various types could be detected. Lines similar to the Ginga detections can be detected in relatively few BATSE bursts; for example, in only ~20 bursts are lines similar to the GB 880205 pair of lines detectable. Ginga reported lines at ~20 and ~40 keV whereas the low energy cutoff of the BATSE spectra is typically above 20 keV; hence BATSE's sensitivity to lines is less than that of Ginga below 40 keV, and greater above. Therefore the probability that the GB 880205 lines would be detected in a Ginga burst rather than a BATSE burst is ~0.2. Finally, we adopted a more appropriate test of the significance of a line feature.Comment: 20 pages, AASTeX 4.0, 5 figures, Ap.J. in pres

    Large Scale Electronic Structure Calculations with Multigrid Acceleration

    Full text link
    We have developed a set of techniques for performing large scale ab initio calculations using multigrid accelerations and a real-space grid as a basis. The multigrid methods permit efficient calculations on ill-conditioned systems with long length scales or high energy cutoffs. The technique has been applied to systems containing up to 100 atoms, including a highly elongated diamond cell, an isolated C60_{60} molecule, and a 32-atom cell of GaN with the Ga d-states in valence. The method is well suited for implementation on both vector and massively parallel architectures.Comment: 4 pages, 1 postscript figur

    Determination of Short Crack Depth with an Acoustic Microphone

    Get PDF
    For the prediction of the lifetime of any component, subjected to alternating stresses, the knowledge of the growth behavior of defects is essential. Most methods of monitoring the propagation of short cracks are confined to measuring the length of the crack on the surface [1]. The depth of the crack must be determined indirectly, assuming the shape of the crack. Acoustic waves, on the other hand, offer the possibility of measuring the depth directly, since acoustic waves can penetrate into the material. This allows the measurement not only of the growth behavior of fatigue cracks on the surface, but also changes of the crack geometry inside the specimen. Current applications of direct acoustic monitoring of crack growth have been developed for cracks of the order of millimeters. One acoustic depth measurement technique is the Time-of-Flight-Diffraction (TOFD) technique [2–4], which is based on timing measurements of the scattered signals from the defect. Our investigations are concerned with the application of TOFD technique for the depth measurement of short cracks (70–200 μm in surface length) using a scanning acoustic microscope (SAM) [5–6]. Depth measurements were first carried out on cracks in the transparent material polystyrene. This allows a direct comparison between acoustic and optical depth measurements. Subsequently, the depth of fatigue cracks in an A1 alloy were measured, and the acoustic measurements were compared with direct measurements of the crack geometry by sectioning the crack

    Evidence for an Early High-Energy Afterglow Observed with BATSE from GRB980923

    Get PDF
    In this Letter, we present the first evidence in the BATSE data for a prompt high-energy (25-300 keV) afterglow component from a gamma-ray burst (GRB), GRB980923. The event consists of rapid variabilty lasting ~40 s followed by a smooth power law emission tail lasting ~400 s. An abrupt change in spectral shape is found when the tail becomes noticeable. Our analysis reveals that the spectral evolution in the tail of the burst mimics that of a cooling synchrotron spectrum, similar to the spectral evolution of the low-energy afterglows for GRBs. This evidence for a separate emission component is consistent with the internal-external shock scenario in the relativistic fireball picture. In particular, it illustrates that the external shocks can be generated during the gamma-ray emission phase, as in the case of GRB990123.Comment: 4 pages, 4 figures, accepted for publication in Astrophysical Journal Letter

    Entanglement between static and flying qubits in a semiconducting carbon nanotube

    Full text link
    Entanglement can be generated by two electrons in a spin-zero state on a semiconducting single-walled carbon nanotube. The two electrons, one weakly bound in a shallow well in the conduction band, and the other injected into the conduction band, are coupled by the Coulomb interaction. Both transmission and entanglement are dependent on the well characteristics, which can be controlled by a local gate, and on the kinetic energy of the injected electron. Regimes with different degrees of electron correlation exhibit full or partial entanglement. In the latter case, the maximum entanglement can be estimated as a function of width and separation of a pair of singlet-triplet resonances.Comment: 17 pages and 12 figures, accepted to J. Phys. Cond. Ma
    • …
    corecore