78 research outputs found

    Stretching of polymers around the Kolmogorov scale in a turbulent shear flow

    Full text link
    We present numerical studies of stretching of Hookean dumbbells in a turbulent Navier-Stokes flow with a linear mean profile, =Sy. In addition to the turbulence features beyond the viscous Kolmogorov scale \eta, the dynamics at the equilibrium extension of the dumbbells significantly below eta is well resolved. The variation of the constant shear rate S causes a change of the turbulent velocity fluctuations on all scales and thus of the intensity of local stretching rate of the advecting flow. The latter is measured by the maximum Lyapunov exponent lambda_1 which is found to increase as \lambda_1 ~ S^{3/2}, in agreement with a dimensional argument. The ensemble of up to 2 times 10^6 passively advected dumbbells is advanced by Brownian dynamics simulations in combination with a pseudospectral integration for the turbulent shear flow. Anisotropy of stretching is quantified by the statistics of the azimuthal angle ϕ\phi which measures the alignment with the mean flow axis in the x-y shear plane, and the polar angle theta which determines the orientation with respect to the shear plane. The asymmetry of the probability density function (PDF) of phi increases with growing shear rate S. Furthermore, the PDF becomes increasingly peaked around mean flow direction (phi= 0). In contrast, the PDF of the polar angle theta is symmetric and less sensitive to changes of S.Comment: 16 pages, 14 Postscript figures (2 with reduced quality

    Statistical Properties of Turbulence: An Overview

    Get PDF
    We present an introductory overview of several challenging problems in the statistical characterisation of turbulence. We provide examples from fluid turbulence in three and two dimensions, from the turbulent advection of passive scalars, turbulence in the one-dimensional Burgers equation, and fluid turbulence in the presence of polymer additives.Comment: 34 pages, 31 figure

    The GPR55 agonist lysophosphatidylinositol acts as an intracellular messenger and bidirectionally modulates Ca2+-activated large-conductance K+ channels in endothelial cells

    Get PDF
    Lysophospholipids are known to serve as intra- and extracellular messengers affecting many physiological processes. Lysophosphatidylinositol (LPI), which is produced in endothelial cells, acts as an endogenous agonist of the orphan receptor, G protein-coupled receptor 55 (GPR55). Stimulation of GPR55 by LPI evokes an intracellular Ca2+ rise in several cell types including endothelial cells. In this study, we investigated additional direct, receptor-independent effects of LPI on endothelial large-conductance Ca2+ and voltage-gated potassium (BKCa) channels. Electrophysiological experiments in the inside-out configuration revealed that LPI directly affects the BKCa channel gating properties. This effect of LPI strictly depended on the presence of Ca2+ and was concentration-dependent, reversible, and dual in nature. The modulating effects of LPI on endothelial BKCa channels correlated with their initial open probability (Po): stimulation at low Po (<0.3) and inhibition at high Po levels (>0.3). In the whole-cell configuration, LPI in the pipette facilitated membrane hyperpolarization in response to low (0.1–2 μM) histamine concentrations. In contrast, LPI counteracted membrane hyperpolarization in response to supramaximal cell stimulation with histamine. These results highlight a novel receptor-independent and direct bidirectional modulation of BKCa channels by LPI on endothelial cells. We conclude that LPI via this mechanism serves as an important modulator of endothelial electrical responses to cell stimulation

    Selective Cholinergic Depletion in Medial Septum Leads to Impaired Long Term Potentiation and Glutamatergic Synaptic Currents in the Hippocampus

    Get PDF
    Cholinergic depletion in the medial septum (MS) is associated with impaired hippocampal-dependent learning and memory. Here we investigated whether long term potentiation (LTP) and synaptic currents, mediated by alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors in the CA1 hippocampal region, are affected following cholinergic lesions of the MS. Stereotaxic intra-medioseptal infusions of a selective immunotoxin, 192-saporin, against cholinergic neurons or sterile saline were made in adult rats. Four days after infusions, hippocampal slices were made and LTP, whole cell, and single channel (AMPA or NMDA receptor) currents were recorded. Results demonstrated impairment in the induction and expression of LTP in lesioned rats. Lesioned rats also showed decreases in synaptic currents from CA1 pyramidal cells and synaptosomal single channels of AMPA and NMDA receptors. Our results suggest that MS cholinergic afferents modulate LTP and glutamatergic currents in the CA1 region of the hippocampus, providing a potential synaptic mechanism for the learning and memory deficits observed in the rodent model of selective MS cholinergic lesioning

    The economics of female genital cutting

    No full text
    The practice of female genital cutting (FGC) has a long history in Africa and it is thought that over 130 million females alive today have undergone the practice. In this paper, we model FGC as a pre-marital investment. We show how the rat-race nature of the marriage market may result in inefficiently high equilibrium levels of FGC. We argue that in this case, regulation results in a (potential) Pareto improvement and that even weak regulation can be effective in eradicating FGC

    Wireless bi-directional data link for an EEG recording system using STM32

    No full text
    A wireless bi-directional data link for an electroencephalogram (EEG) recording system is presented in this paper. The system is mainly composed of a prototype model of an implant and a data recorder. Both the implant and the data recorder use STM32 microcontrollers with an inbuilt radio frequency (RF) transceiver to establish a wireless link between them. The main component of the implant is a mixed-signal EEG acquisition ASIC with 8 channels. The STM32 and the ASIC of the implant module communicate via two SPI interfaces. Optimized software codes for the STM32 microcontrollers have been written to ensure a reliable wireless communication between the implant and the data recorder. A PC is connected to the data recorder which enables the communication by sending the configuration data to the implant. The data received by the data recorder is stored in a PC. The amount of input referred noise of the ASIC present in the output is estimated with the help of MATLAB

    Action trajectory reconstruction from inertial sensor measurements

    Full text link

    Statistical Closures for Homogeneous Shear Flow Turbulence of Dilute Polymer Solutions

    No full text
    corecore