2,651 research outputs found
Quantum radiation in a plane cavity with moving mirrors
We consider the electromagnetic vacuum field inside a perfect plane cavity
with moving mirrors, in the nonrelativistic approximation. We show that low
frequency photons are generated in pairs that satisfy simple properties
associated to the plane geometry. We calculate the photon generation rates for
each polarization as functions of the mechanical frequency by two independent
methods: on one hand from the analysis of the boundary conditions for moving
mirrors and with the aid of Green functions; and on the other hand by an
effective Hamiltonian approach. The angular and frequency spectra are discrete,
and emission rates for each allowed angular direction are obtained. We discuss
the dependence of the generation rates on the cavity length and show that the
effect is enhanced for short cavity lengths. We also compute the dissipative
force on the moving mirrors and show that it is related to the total radiated
energy as predicted by energy conservation.Comment: 17 pages, 1 figure, published in Physical Review
Inertial forces in the Casimir effect with two moving plates
We combine linear response theory and dimensional regularization in order to
derive the dynamical Casimir force in the low frequency regime. We consider two
parallel plates moving along the normal direction in dimensional space. We
assume the free-space values for the mass of each plate to be known, and obtain
finite, separation-dependent mass corrections resulting from the combined
effect of the two plates. The global mass correction is proportional to the
static Casimir energy, in agreement with Einstein's law of equivalence between
mass and energy for stressed rigid bodies.Comment: 9 pages, 1 figure; title and abstract changed; to appear in Physical
Review
Particle Creation by a Moving Boundary with Robin Boundary Condition
We consider a massless scalar field in 1+1 dimensions satisfying a Robin
boundary condition (BC) at a non-relativistic moving boundary. We derive a
Bogoliubov transformation between input and output bosonic field operators,
which allows us to calculate the spectral distribution of created particles.
The cases of Dirichlet and Neumann BC may be obtained from our result as
limiting cases. These two limits yield the same spectrum, which turns out to be
an upper bound for the spectra derived for Robin BC. We show that the particle
emission effect can be considerably reduced (with respect to the
Dirichlet/Neumann case) by selecting a particular value for the oscillation
frequency of the boundary position
Dynamical Casimir effect with Dirichlet and Neumann boundary conditions
We derive the radiation pressure force on a non-relativistic moving plate in
1+1 dimensions. We assume that a massless scalar field satisfies either
Dirichlet or Neumann boundary conditions (BC) at the instantaneous position of
the plate. We show that when the state of the field is invariant under time
translations, the results derived for Dirichlet and Neumann BC are equal. We
discuss the force for a thermal field state as an example for this case. On the
other hand, a coherent state introduces a phase reference, and the two types of
BC lead to different results.Comment: 12 page
The Deformable Universe
The concept of smooth deformations of a Riemannian manifolds, recently
evidenced by the solution of the Poincar\'e conjecture, is applied to
Einstein's gravitational theory and in particular to the standard FLRW
cosmology. We present a brief review of the deformation of Riemannian geometry,
showing how such deformations can be derived from the Einstein-Hilbert
dynamical principle. We show that such deformations of space-times of general
relativity produce observable effects that can be measured by four-dimensional
observers. In the case of the FLRW cosmology, one such observable effect is
shown to be consistent with the accelerated expansion of the universe.Comment: 20 pages, LaTeX, 3 figure
Métodos probabilísticos para quantificar a influência do El Niño/oscilação sul sobre o risco de epidemias.
Neste trabalho, apresentamos e discutimos as vantagens e limitações de métodos estatísticos paramétricos e semi-paramétricos para a caracterização da influência do fenômeno El Nino/Oscilação Sul (ENOS) sobre o risco de epidemias de doenças de plantas. Foram utilizados dados simulados de um índice de severidade da ferrugem asiática em soja para Rosário do Sul, RS, local previamente identificado como passível da influência de ENOS na precipitação pluvial no período da safra. A influência ENOS sobre a produtividade agrícola e outras variáveis dependentes da precipitação pluviométrica, como a severidade de doenças, é bem conhecida e documentada em todo o mundo. No entanto, o uso rigoroso de abordagens probabilísticas inferenciais para quantificação da influência de indicadores climáticos sobre o de risco de epidemias ainda é raro
Lateral Casimir-Polder force with corrugated surfaces
We derive the lateral Casimir-Polder force on a ground state atom on top of a
corrugated surface, up to first order in the corrugation amplitude. Our
calculation is based on the scattering approach, which takes into account
nonspecular reflections and polarization mixing for electromagnetic quantum
fluctuations impinging on real materials. We compare our first order exact
result with two commonly used approximation methods. We show that the proximity
force approximation (large corrugation wavelengths) overestimates the lateral
force, while the pairwise summation approach underestimates it due to the
non-additivity of dispersion forces. We argue that a frequency shift
measurement for the dipolar lateral oscillations of cold atoms could provide a
striking demonstration of nontrivial geometrical effects on the quantum vacuum.Comment: 12 pages, 6 figures, contribution to QFEXT07 proceeding
Trembling cavities in the canonical approach
We present a canonical formalism facilitating investigations of the dynamical
Casimir effect by means of a response theory approach. We consider a massless
scalar field confined inside of an arbitaray domain , which undergoes
small displacements for a certain period of time. Under rather general
conditions a formula for the number of created particles per mode is derived.
The pertubative approach reveals the occurance of two generic processes
contributing to the particle production: the squeezing of the vacuum by
changing the shape and an acceleration effect due to motion af the boundaries.
The method is applied to the configuration of moving mirror(s). Some properties
as well as the relation to local Green function methods are discussed.
PACS-numbers: 12.20; 42.50; 03.70.+k; 42.65.Vh Keywords: Dynamical Casimir
effect; Moving mirrors; Cavity quantum field theory; Vibrating boundary
The Scattering Approach to the Casimir Force
We present the scattering approach which is nowadays the best tool for
describing the Casimir force in realistic experimental configurations. After
reminders on the simple geometries of 1d space and specular scatterers in 3d
space, we discuss the case of stationary arbitrarily shaped mirrors in
electromagnetic vacuum. We then review specific calculations based on the
scattering approach, dealing for example with the forces or torques between
nanostructured surfaces and with the force between a plane and a sphere. In
these various cases, we account for the material dependence of the forces, and
show that the geometry dependence goes beyond the trivial {\it Proximity Force
Approximation} often used for discussing experiments.Comment: Proceedings of the QFEXT'09 conference (Oklahoma, 2009
- …