76 research outputs found

    The electronic pseudogap in optimally doped NCCO

    Get PDF
    We study the effect of antiferromagnetic correlations in the three-band Emery model, in comparison with the experimental angle-resolved photoemission (ARPES) spectra in optimally doped NCCO. The same calculation, formerly used to describe BSCCO, is relevant here, but in contrast to BSCCO, where quantum paramagnon fluctuations are important, the characteristic energy of the dispersive paramagnons in NCCO is of the order of Tc. The wide dispersing features of the single-electron spectrum in NCCO are analogous to the BSCCO hump. The Fermi surface is pseudogapped in both the nodal and antinodal directions, although the detailed features differ, being dominated by loss of intensity in the nodal direction, and loss of coherence in the antinodal one. Direct oxygen-oxygen hopping is important in NCCO as well as in BSCCO, in order to obtain overall agreement with the measured ARPES spectra.Comment: Final version as accepted in PRB(RC), one paragraph added, 4 pages, 3 figure

    Coexistence of Antiferromagnetism and Superconductivity in Electron-doped High-Tc Superconductors

    Full text link
    We present magnetotransport evidence for antiferromagnetism in films of the electron-doped cuprates Pr2x_{2-x}Cex_xCuO4_4. Our results show clear signature of static antiferromagnetism up to optimal doping x=0.15, with a quantum phase transition close to x=0.16, and a coexistence of static antiferromagnetism and superconductivity for 0.12\lex\le0.15

    Angle-Resolved Photoemission Spectroscopy of the Antiferromagnetic Superconductor Nd1.87Ce0.13CuO4: Anisotropic Spin-Correlation Gap, Pseudogap, and the Induced Quasiparticle Mass Enhancement

    Full text link
    We performed high-resolution angle-resolved photoemission spectroscopy on Nd1.87Ce0.13CuO4, which is located at the boundary of the antiferromagnetic (AF) and the superconducting phase. We observed that the quasiparticle (QP) effective mass around (pi, 0) is strongly enhanced due to the opening of the AF gap. The QP mass and the AF gap are found to be anisotropic, with the largest value near the intersecting point of the Fermi surface and the AF zone boundary. In addition, we observed that the QP peak disappears around the Neel temperature (TN) while the AF pseudogap is gradually filled up at much higher temperatures, possibly due to the short-range AF correlation.Comment: 4 pages, 4 figure

    Destruction of Neel order and appearance of superconductivity in electron-doped cuprates by oxygen annealing process

    Full text link
    We use thermodynamic and neutron scattering measurements to study the effect of oxygen annealing on the superconductivity and magnetism in Pr0.88_{0.88}LaCe0.12_{0.12}CuO4δ_{4-\delta}. Although the transition temperature TcT_c measured by susceptibility and superconducting coherence length increase smoothly with gradual oxygen removal from the annealing process, bulk superconductivity, marked by a specific heat anomaly at TcT_c and the presence of a neutron magnetic resonance, only appears abruptly when TcT_c is close to the largest value. These results suggest that the effect of oxygen annealing must be first determined in order to establish a Ce-doping dependence of antiferromagnetism and superconductivity phase diagram for electron-doped copper oxides.Comment: 5 pages, 4 figures, accepted by Phys. Rev.

    Absence of magnetic field effect on static magnetic order in electron-doped superconductor Nd_{1.86}Ce_{0.14}CuO_4

    Full text link
    Neutron-scattering experiments were performed to study the magnetic field effect on the electron-doped cuprate superconductor Nd_{1.86}Ce_{0.14}CuO_4, which shows the coexistence of magnetic order and superconductivity. The (1/2 3/2 0) magnetic Bragg intensity, which mainly originates from the order of both the Cu and Nd moments at low temperatures, shows no magnetic field dependence when the field is applied perpendicular to the CuO_{2} plane up to 10 T above the upper critical field. This result is significantly different from that reported for the hole-doped cuprate superconductors, in which the quasi-static magnetic order is noticeably enhanced under a magnetic field.Comment: 4 pages, 3 figure

    Dispersion of the high-energy phonon modes in Nd1.85_{1.85}Ce0.15_{0.15}CuO4_4

    Full text link
    The dispersion of the high-energy phonon modes in the electron doped high-temperature superconductor Nd1.85_{1.85}Ce0.15_{0.15}CuO4_4 has been studied by inelastic neutron scattering. The frequencies of phonon modes with Cu-O bond-stretching character drop abruptly when going from the Brillouin zone center along the [100]-direction; this dispersion is qualitatively similar to observations in the hole-doped cuprates. We also find a softening of the bond-stretching modes along the [110]-direction but which is weaker and exhibits a sinusoidal dispersion. The phonon anomalies are discussed in comparison to hole-doped cuprate superconductors and other metallic perovskites

    Phase Decomposition and Chemical Inhomogeneity in Nd2-xCexCuO4

    Full text link
    Extensive X-ray and neutron scattering experiments and additional transmission electron microscopy results reveal the partial decomposition of Nd2-xCexCuO4 (NCCO) in a low-oxygen-fugacity environment such as that typically realized during the annealing process required to create a superconducting state. Unlike a typical situation in which a disordered secondary phase results in diffuse powder scattering, a serendipitous match between the in-plane lattice constant of NCCO and the lattice constant of one of the decomposition products, (Nd,Ce)2O3, causes the secondary phase to form an oriented, quasi-two-dimensional epitaxial structure. Consequently, diffraction peaks from the secondary phase appear at rational positions (H,K,0) in the reciprocal space of NCCO. Additionally, because of neodymium paramagnetism, the application of a magnetic field increases the low-temperature intensity observed at these positions via neutron scattering. Such effects may mimic the formation of a structural superlattice or the strengthening of antiferromagnetic order of NCCO, but the intrinsic mechanism may be identified through careful and systematic experimentation. For typical reduction conditions, the (Nd,Ce)2O3 volume fraction is ~1%, and the secondary-phase layers exhibit long-range order parallel to the NCCO CuO2 sheets and are 50-100 angstromsthick. The presence of the secondary phase should also be taken into account in the analysis of other experiments on NCCO, such as transport measurements.Comment: 15 pages, 17 figures, submitted to Phys. Rev.

    Spin correlations in the electron-doped high-transition-temperature superconductor Nd{2-x}Ce{x}CuO{4+/-delta}

    Full text link
    High-transition-temperature (high-Tc) superconductivity develops near antiferromagnetic phases, and it is possible that magnetic excitations contribute to the superconducting pairing mechanism. To assess the role of antiferromagnetism, it is essential to understand the doping and temperature dependence of the two-dimensional antiferromagnetic spin correlations. The phase diagram is asymmetric with respect to electron and hole doping, and for the comparatively less-studied electron-doped materials, the antiferromagnetic phase extends much further with doping [1, 2] and appears to overlap with the superconducting phase. The archetypical electron-doped compound Nd{2-x}Ce{x}CuO{4\pm\delta} (NCCO) shows bulk superconductivity above x \approx 0.13 [3, 4], while evidence for antiferromagnetic order has been found up to x \approx 0.17 [2, 5, 6]. Here we report inelastic magnetic neutron-scattering measurements that point to the distinct possibility that genuine long-range antiferromagnetism and superconductivity do not coexist. The data reveal a magnetic quantum critical point where superconductivity first appears, consistent with an exotic quantum phase transition between the two phases [7]. We also demonstrate that the pseudogap phenomenon in the electron-doped materials, which is associated with pronounced charge anomalies [8-11], arises from a build-up of spin correlations, in agreement with recent theoretical proposals [12, 13].Comment: 5 pages, 4 figure

    Square vortex lattice at anomalously low magnetic fields in electron-doped Nd1.85_{1.85}Ce0.15_{0.15}CuO4_{4}

    Full text link
    We report here on the first direct observations of the vortex lattice in the bulk of electron-doped Nd1.85_{1.85}Ce0.15_{0.15}CuO4_{4} single crystals. Using small angle neutron scattering, we have observed a square vortex lattice with the nearest-neighbors oriented at 45^{\circ} from the Cu-O bond direction, which is consistent with theories based on the d-wave superconducting gap. However, the square symmetry persists down to unusually low magnetic fields. Moreover, the diffracted intensity from the vortex lattice is found to decrease rapidly with increasing magnetic field.Comment: 4 pages, 4 Figures, accepted for publication in Phys. Rev. Let

    Advances in single crystal growth and annealing treatment of electron-doped HTSC

    Full text link
    High quality electron-doped HTSC single crystals of Pr2xCexCuO4+δ\rm Pr_{2-x}Ce_{x}CuO_{4+\delta} and Nd2xCexCuO4+δ\rm Nd_{2-x}Ce_{x}CuO_{4+\delta} have been successfully grown by the container-free traveling solvent floating zone technique. The optimally doped Pr2xCexCuO4+δ\rm Pr_{2-x}Ce_{x}CuO_{4+\delta} and Nd2xCexCuO4+δ\rm Nd_{2-x}Ce_{x}CuO_{4+\delta} crystals have transition temperatures TcT_{\rm c} of 2525\,K and 23.523.5\,K, respectively, with a transition width of less than 11\,K. We found a strong dependence of the optimal growth parameters on the Ce content xx. We discuss the optimization of the post-growth annealing treatment of the samples, the doping extension of the superconducting dome for both compounds as well as the role of excess oxygen. The absolute oxygen content of the as-grown crystals is determined from thermogravimetric experiments and is found to be 4.0\ge 4.0. This oxygen surplus is nearly completely removed by a post-growth annealing treatment. The reduction process is reversible as demonstrated by magnetization measurements. In as-grown samples the excess oxygen resides on the apical site O(3). This apical oxygen has nearly no doping effect, but rather influences the evolution of superconductivity by inducing additional disorder in the CuO2_{2} layers. The very high crystal quality of Nd2xCexCuO4+δ\rm Nd_{2-x}Ce_{x}CuO_{4+\delta} is particularly manifest in magnetic quantum oscillations observed on several samples at different doping levels. They provide a unique opportunity of studying the Fermi surface and its dependence on the carrier concentration in the bulk of the crystals.Comment: 19 pages, 7 figures, submitted to Eur. Phys. J.
    corecore