2,930 research outputs found
Efficiency of autonomous soft nano-machines at maximum power
We consider nano-sized artificial or biological machines working in steady
state enforced by imposing non-equilibrium concentrations of solutes or by
applying external forces, torques or electric fields. For unicyclic and
strongly coupled multicyclic machines, efficiency at maximum power is not
bounded by the linear response value 1/2. For strong driving, it can even
approach the thermodynamic limit 1. Quite generally, such machines fall in
three different classes characterized, respectively, as "strong and efficient",
"strong and inefficient", and "balanced". For weakly coupled multicyclic
machines, efficiency at maximum power has lost any universality even in the
linear response regime
Letter to the Editor. Re: single potential analysis of cavernous electrical activity in spinal cord injury patients.
Stochastic thermodynamics of chemical reaction networks
For chemical reaction networks described by a master equation, we define
energy and entropy on a stochastic trajectory and develop a consistent
nonequilibrium thermodynamic description along a single stochastic trajectory
of reaction events. A first-law like energy balance relates internal energy,
applied (chemical) work and dissipated heat for every single reaction. Entropy
production along a single trajectory involves a sum over changes in the entropy
of the network itself and the entropy of the medium. The latter is given by the
exchanged heat identified through the first law. Total entropy production is
constrained by an integral fluctuation theorem for networks arbitrarily driven
by time-dependent rates and a detailed fluctuation theorem for networks in the
steady state. Further exact relations like a generalized Jarzynski relation and
a generalized Clausius inequality are discussed. We illustrate these results
for a three-species cyclic reaction network which exhibits nonequilibrium
steady states as well as transitions between different steady states.Comment: 14 pages, 2 figures, accepted for publication in J. Chem. Phy
Efficiency of a Brownian information machine
A Brownian information machine extracts work from a heat bath through a
feedback process that exploits the information acquired in a measurement. For
the paradigmatic case of a particle trapped in a harmonic potential, we
determine how power and efficiency for two variants of such a machine operating
cyclically depend on the cycle time and the precision of the positional
measurements. Controlling only the center of the trap leads to a machine that
has zero efficiency at maximum power whereas additional optimal control of the
stiffness of the trap leads to an efficiency bounded between 1/2, which holds
for maximum power, and 1 reached even for finite cycle time in the limit of
perfect measurements.Comment: 9 pages, 2 figure
Hybrid simulations of lateral diffusion in fluctuating membranes
In this paper we introduce a novel method to simulate lateral diffusion of
inclusions in a fluctuating membrane. The regarded systems are governed by two
dynamic processes: the height fluctuations of the membrane and the diffusion of
the inclusion along the membrane. While membrane fluctuations can be expressed
in terms of a dynamic equation which follows from the Helfrich Hamiltonian, the
dynamics of the diffusing particle is described by a Langevin or Smoluchowski
equation. In the latter equations, the curvature of the surface needs to be
accounted for, which makes particle diffusion a function of membrane
fluctuations. In our scheme these coupled dynamic equations, the membrane
equation and the Langevin equation for the particle, are numerically integrated
to simulate diffusion in a membrane. The simulations are used to study the
ratio of the diffusion coefficient projected on a flat plane and the
intramembrane diffusion coefficient for the case of free diffusion. We compare
our results with recent analytical results that employ a preaveraging
approximation and analyze the validity of this approximation. A detailed
simulation study of the relevant correlation functions reveals a surprisingly
large range where the approximation is applicable.Comment: 12 pages, 9 figures, accepted for publication in Phys. Rev.
The Role of Bilayer Tilt Difference in Equilibrium Membrane Shapes
Lipid bilayer membranes below their main transition have two tilt order
parameters, corresponding to the two monolayers. These two tilts may be
strongly coupled to membrane shape but only weakly coupled to each other. We
discuss some implications of this observation for rippled and saddle phases,
bilayer tubules, and bicontinuous phases. Tilt difference introduces a length
scale into the elastic theory of tilted fluid membranes. It can drive an
instability of the flat phase; it also provides a simple mechanism for the
spontaneous breaking of inversion symmetry seen in some recent experiments.Comment: Latex file; .ps available at
http://dept.physics.upenn.edu/~nelson/saddle.p
Nonequilibrium stabilization of charge states in double quantum dots
We analyze the decoherence of charge states in double quantum dots due to
cotunneling. The system is treated using the Bloch-Redfield generalized master
equation for the Schrieffer-Wolff transformed Hamiltonian. We show that the
decoherence, characterized through a relaxation and a dephasing time
, can be controlled through the external voltage and that the
optimum point, where these times are maximum, is not necessarily in
equilibrium. We outline the mechanism of this nonequilibrium-induced
enhancement of lifetime and coherence. We discuss the relevance of our results
for recent charge qubit experiments.Comment: 5 pages, 5 figure
Escape from a metastable well under a time-ramped force
Thermally activated escape of an over-damped particle from a metastable well
under the action of a time-ramped force is studied. We express the mean first
passage time (MFPT) as the solution to a partial differential equation, which
we solve numerically for a model case. We discuss two approximations of the
MFPT, one of which works remarkably well over a wide range of loading rates,
while the second is easy to calculate and can provide a valuable first
estimate.Comment: 9 pages, including 2 figure
- …
