7 research outputs found
Large scale transcriptional analysis of MHC class I haplotype diversity in sheep
Domestic sheep (Ovis aries) have been an important component of livestock agricultural production for thousands of years. Preserving genetic diversity within livestock populations maintains a capacity to respond to changing environments and rapidly evolving pathogens. MHC genetic diversity can influence immune functionality at individual and population levels. Here, we focus on defining functional MHC class I haplotype diversity in a large cohort of Scottish Blackface sheep pre-selected for high levels of MHC class II DRB1 diversity. Using high-throughput amplicon sequencing with three independent sets of barcoded primers we identified 134 MHC class I transcripts within 38 haplotypes. Haplotypes were identified with between two and six MHC class I genes, plus variable numbers of conserved sequences with very low read frequencies. One or two highly transcribed transcripts dominate each haplotype indicative of two highly polymorphic, classical MHC class I genes. Additional clusters of medium, low, and very low expressed transcripts are described, indicative of lower transcribed classical, non-classical and genes whose function remains to be determined.</p
Development of a recombinant protein-based ELISA for diagnosis of larval cyathostomin infection
SUMMARYCyathostomins are ubiquitous nematodes of horses. Once ingested, they can spend a substantial time as encysted larvae in the intestinal wall. The larvae can comprise up to 90% of the total burden, with up to several million worms reported in individuals. These stages can emerge in large numbers to cause life-threatening colitis. Direct methods for detection of encysted larval burdens in live horses do not exist. Previously, two antigen complexes were identified as promising markers for infection. A component of these, cyathostomin gut associated larval antigen-1 (Cy-GALA-1), was identified following immunoscreening of a complementary DNA library. Serum immunoglobulin G(T) (IgG(T)) responses to Cy-GALA-1 were shown to inform on larval infection. Sequence analysis of polymerase chain reaction products amplified from individual worms indicated that Cy-GALA-1 was derived from Cyathostomum pateratum. As cyathostomin infections always comprise multiple species, a diagnostic test must account for this. Here, segments of the Cy-gala gene were isolated from four common species, Cyathostomum catinatum, Cylicocyclus ashworthi, Cylicostephanus goldi and Cylicostephanus longibursatus, and the associated proteins expressed in recombinant form. The specificity and immunogenicity of each protein was confirmed. Each protein was assessed by enzyme linked immuno sorbent assay (ELISA) for its ability for informing on the presence of encysted larval infection and the level of burden.</jats:p