503 research outputs found

    Optimization of quantum Monte Carlo wave functions by energy minimization

    Get PDF
    We study three wave function optimization methods based on energy minimization in a variational Monte Carlo framework: the Newton, linear and perturbative methods. In the Newton method, the parameter variations are calculated from the energy gradient and Hessian, using a reduced variance statistical estimator for the latter. In the linear method, the parameter variations are found by diagonalizing a non-symmetric estimator of the Hamiltonian matrix in the space spanned by the wave function and its derivatives with respect to the parameters, making use of a strong zero-variance principle. In the less computationally expensive perturbative method, the parameter variations are calculated by approximately solving the generalized eigenvalue equation of the linear method by a nonorthogonal perturbation theory. These general methods are illustrated here by the optimization of wave functions consisting of a Jastrow factor multiplied by an expansion in configuration state functions (CSFs) for the C2_2 molecule, including both valence and core electrons in the calculation. The Newton and linear methods are very efficient for the optimization of the Jastrow, CSF and orbital parameters. The perturbative method is a good alternative for the optimization of just the CSF and orbital parameters. Although the optimization is performed at the variational Monte Carlo level, we observe for the C2_2 molecule studied here, and for other systems we have studied, that as more parameters in the trial wave functions are optimized, the diffusion Monte Carlo total energy improves monotonically, implying that the nodal hypersurface also improves monotonically.Comment: 18 pages, 8 figures, final versio

    Phase Transitions with Discrete Symmetry Breaking in Antiferromagnetic Heisenberg Models on a Triangular Lattice

    Full text link
    We study phase transition behavior of the Heisenberg model on a distorted triangular lattice with competing interactions. The ground-state phase diagram indicates that underlying symmetry can be changed by tuning parameters. We focus on two cases in which a phase transition with discrete symmetry breaking occurs. The first is that the order parameter space is SO(3)×C3\times C_3. In this case, a first-order phase transition, with threefold symmetry breaking, occurs. The second has the order parameter space SO(3)×Z2\times Z_2. In this case, a second-order phase transition occurs with twofold symmetry breaking. To investigate finite-temperature properties of these phase transitions from a microscopic viewpoint, we introduce a method to make the connection between continuous frustrated spin systems and the Potts model with invisible states.Comment: 5 pages, 2 figure

    Low-energy properties of two-dimensional quantum triangular antiferromagnets: Non-perturbative renormalization group approach

    Get PDF
    We explore low temperature properties of quantum triangular Heisenberg antiferromagnets in two dimension in the vicinity of the quantum phase transition at zero temperature. Using the effective field theory described by the SO(3)×SO(2)/SO(2)SO(3)\times SO(2)/SO(2) matrix Ginzburg-Landau-Wilson model and the non-perturbative renormalization group method, we clarify how quantum and thermal fluctuations affect long-wavelength behaviors in the parameter region where the systems exhibit a fluctuation-driven first order transition to a long-range ordered state. We show that at finite temperatures the crossover from a quantum ϕ6\phi^6 theory to a renormalized two-dimensional classical nonlinear sigma model region appears, and in this crossover region, massless fluctuation modes with linear dispersion a la spin waves govern low-energy physics. Our results are in good agreement with the recent experimental observations for the two-dimensional triangular Heisenberg spin system, NiGa2_2S4_4.Comment: 14 pages,7 figures, version accepted for publication in Physical Review

    Kondo lattice on the edge of a two-dimensional topological insulator

    Full text link
    We revisit the problem of a single quantum impurity on the edge of a two-dimensional time-reversal invariant topological insulator and show that the zero temperature phase diagram contains a large local moment region for antiferromagnetic Kondo coupling which was missed by previous poor man's scaling treatments. The combination of an exact solution at the so-called decoupling point and a renormalization group analysis \`a la Anderson-Yuval-Hamann allows us to access the regime of strong electron-electron interactions on the edge and strong Kondo coupling. We apply similar methods to the problem of a regular one-dimensional array of quantum impurities interacting with the edge liquid. When the edge electrons are at half-filling with respect to the impurity lattice, the system remains gapless unless the Luttinger parameter of the edge is less than 1/2, in which case two-particle backscattering effects drive the system to a gapped phase with long-range Ising antiferromagnetic order. This is in marked contrast with the gapped disordered ground state of the ordinary half-filled one-dimensional Kondo lattice.Comment: 18 pages, 3 figures; fixed typos, updated reference

    Full counting statistics of spin transfer through the Kondo dot

    Full text link
    We calculate the spin current distribution function for a Kondo dot in two different regimes. In the exactly solvable Toulouse limit the linear response, zero temperature statistics of the spin transfer is trinomial, such that all the odd moments vanish and the even moments follow a binomial distribution. On the contrary, the corresponding spin-resolved distribution turns out to be binomial. The combined spin and charge statistics is also determined. In particular, we find that in the case of a finite magnetic field or an asymmetric junction the spin and charge measurements become statistically dependent. Furthermore, we analyzed the spin counting statistics of a generic Kondo dot at and around the strong-coupling fixed point (the unitary limit). Comparing these results with the Toulouse limit calculation we determine which features of the latter are generic and which ones are artifacts of the spin symmetry breaking.Comment: 9 pages, 3 eps figure

    The Universlity Class of Monopole Condensation in Non-Compact, Quenched Lattice QED

    Full text link
    Finite size scaling studies of monopole condensation in noncompact quenched lattice QEDQED indicate an authentic second order phase transition lying in the universality class of four dimensional percolation. Since the upper critical dimension of percolation is six, the measured critical indices are far from mean-field values. We propose a simple set of ratios as the exact critical indices for this transition. The implication of these results for critical points in Abelian gauge theories are discussed.Comment: ILL-(TH)-92-6, CERN-TH.6515/92, 10 pages, no figures available as PS fil

    Full optimization of Jastrow-Slater wave functions with application to the first-row atoms and homonuclear diatomic molecules

    Full text link
    We pursue the development and application of the recently-introduced linear optimization method for determining the optimal linear and nonlinear parameters of Jastrow-Slater wave functions in a variational Monte Carlo framework. In this approach, the optimal parameters are found iteratively by diagonalizing the Hamiltonian matrix in the space spanned by the wave function and its first-order derivatives, making use of a strong zero-variance principle. We extend the method to optimize the exponents of the basis functions, simultaneously with all the other parameters, namely the Jastrow, configuration state function and orbital parameters. We show that the linear optimization method can be thought of as a so-called augmented Hessian approach, which helps explain the robustness of the method and permits us to extend it to minimize a linear combination of the energy and the energy variance. We apply the linear optimization method to obtain the complete ground-state potential energy curve of the C_2 molecule up to the dissociation limit, and discuss size consistency and broken spin-symmetry issues in quantum Monte Carlo calculations. We perform calculations of the first-row atoms and homonuclear diatomic molecules with fully optimized Jastrow-Slater wave functions, and we demonstrate that molecular well depths can be obtained with near chemical accuracy quite systematically at the diffusion Monte Carlo level for these systems.Comment: 15 pages, 3 figures, to appear in Journal of Chemical Physic

    The sawtooth chain: From Heisenberg spins to Hubbard electrons

    Full text link
    We report on recent studies of the spin-half Heisenberg and the Hubbard model on the sawtooth chain. For both models we construct a class of exact eigenstates which are localized due to the frustrating geometry of the lattice for a certain relation of the exchange (hopping) integrals. Although these eigenstates differ in details for the two models because of the different statistics, they share some characteristic features. The localized eigenstates are highly degenerate and become ground states in high magnetic fields (Heisenberg model) or at certain electron fillings (Hubbard model), respectively. They may dominate the low-temperature thermodynamics and lead to an extra low-temperature maximum in the specific heat. The ground-state degeneracy can be calculated exactly by a mapping of the manifold of localized ground states onto a classical hard-dimer problem, and explicit expressions for thermodynamic quantities can be derived which are valid at low temperatures near the saturation field for the Heisenberg model or around a certain value of the chemical potential for the Hubbard model, respectively.Comment: 16 pages, 6 figure, the paper is based on an invited talk on the XXXI International Workshop on Condensed Matter Theories, Bangkok, Dec 2007; notation of x-axis in Fig.6 corrected, references update

    Charge Order in the Falicov-Kimball Model

    Full text link
    We examine the spinless one-dimensional Falicov-Kimball model (FKM) below half-filling, addressing both the binary alloy and valence transition interpretations of the model. Using a non-perturbative technique, we derive an effective Hamiltonian for the occupation of the localized orbitals, providing a comprehensive description of charge order in the FKM. In particular, we uncover the contradictory ordering roles of the forward-scattering and backscattering itinerant electrons: the latter are responsible for the crystalline phases, while the former produces the phase separation. We find an Ising model describes the transition between the phase separated state and the crystalline phases; for weak-coupling we present the critical line equation, finding excellent agreement with numerical results. We consider several extensions of the FKM that preserve the classical nature of the localized states. We also investigate a parallel between the FKM and the Kondo lattice model, suggesting a close relationship based upon the similar orthogonality catastrophe physics of the associated single-impurity models.Comment: 39 pages, 6 figure

    Cosmology in a String-Dominated Universe

    Get PDF
    The string-dominated universe locally resembles an open universe, and fits dynamical measures of power spectra, cluster abundances, redshift distortions, lensing constraints, luminosity and angular diameter distance relations and microwave background observations. We show examples of networks which might give rise to recent string-domination without requiring any fine-tuned parameters. We discuss how future observations can distinguish this model from other cosmologies.Comment: 17 pages including 4 figures, of which one is in colo
    • 

    corecore