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We explore low-temperature properties of quantum triangular Heisenberg antiferromagnets in two dimen-
sions in the vicinity of the quantum phase transition at zero temperature. Using the effective field theory
described by the O�3��O�2� matrix Ginzburg-Landau-Wilson model and the nonperturbative renormalization
group method, we clarify how quantum and thermal fluctuations affect long-wavelength behaviors in the
parameter region where the systems exhibit a fluctuation-driven first order transition to a long-range ordered
state. We show that at finite temperatures the crossover from a quantum �6 theory to a renormalized two-
dimensional classical nonlinear sigma model region appears, and in this crossover region, massless fluctuation
modes with linear dispersion a la spin waves govern low-energy physics. Our results are partly in good
agreement with the recent experimental observations for the two-dimensional triangular Heisenberg spin sys-
tem, NiGa2S4.
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I. INTRODUCTION

It has been argued for decades that geometrical frustration
gives rise to unusual magnetic properties in quantum antifer-
romagnets, and may bring about an exotic ground state such
as a spin liquid which is characterized by the absence of any
type of spontaneous symmetry breaking including magnetic
long-range order �LRO�, and dimerization, etc.1–7 The con-
cept of the spin liquid was first proposed by Anderson in
connection with the ground state of two-dimensional �2D�
Heisenberg antiferromagnets �HAF� on a triangular lattice.7

While extensive studies on frustrated magnets have revealed
that the triangular HAF may exhibit the magnetic LRO,8–18

the Anderson’s idea is still attracting much interest, and has
been tested for its possible realization in other geometrically
frustrated systems such as pyrochlore and Kagome HAF, and
multiple ring exchange spin models.19–35

Recently, Shimizu et al. reported that in an organic Mott
insulator with spin s= 1

2 on a triangular lattice,
�– �ET�2Cu2�CN�2, no magnetic LRO is observed down to
32 mK.36 Their experimental results suggest the possibility
of a new kind of a ground state including the spin liquid.
Subsequently, Nakatsuji et al. found that in a quasi-2D quan-
tum triangular HAF with s=1, NiGa2S4, there is no sign of
LRO down to 0.35 K, in spite of the existence of strong
anferromagnetic interactions.37 In the latter system, the spe-
cific heat coefficient Cv shows the quadratic-temperature de-
pendence Cv�T2 at sufficiently low-temperatures, and the
uniform spin susceptibility is constant in the low-temperature
regions, indicating the existence of low-lying massless exci-
tations. The origin of these unexpected low-temperature be-
haviors has not yet been explained.

On the other hand, from a theoretical point of view, there
have been only a few works on low-energy properties in the
vicinity of the quantum phase transition at T=0 in the 2D
triangular HAF.38–40 To understand the above-mentioned ex-
perimental observations for quantum triangular HAF pre-
cisely, we need to develop a theory which describes quantum

critical phenomena in these systems at finite temperatures. In
contrast to the quantum case, the 3D classical stacked
Heisenberg model, which is equivalent to the 2D quantum
model at T=0, has been extensively studied by many
authors.8–10,14–18,41–49 Even for the classical systems, the elu-
cidation of the nature of the phase transition has not yet been
completed. Several theoretical works done by Zumbach, Loi-
son and Schotte, Itakura, and Delamotte and co-workers in-
dicate that the 3D classical triangular HAF show a
fluctuation-driven first order phase transition.41–46 On the
other hand, the loop expansion calculations carried out by
Pelissetto et al. and Calabrese et al. support the existence of
the continuous phase transition in these systems.47,49 Also,
most of experiments seem to be in accordance with the con-
tinuous transition.50 However, the former point of view is
quite intriguing, since it implies that the phase transition of
the 2D quantum version of these systems at T=0 may be the
�quantum� fluctuation-driven first order type. Although the
quantum second order phase transition and the related quan-
tum critical phenomena have been comprehensively explored
so far,38–40,51–53 long-wavelength properties which emerge
near the quantum fluctuation-driven first order transition
have not been clarified sufficiently. It is well known that in
the case of the continuous quantum phase transition, critical
phenomena just above the transition point at T=0 are de-
scribed by a renormalized 2D classical theory. In contrast, it
is highly nontrivial how quantum and thermal fluctuations
which induce a first order transition at zero temperature af-
fect low-energy behaviors �see Fig. 1�. In this paper, we
would like to address this issue for the 2D quantum triangu-
lar HAF.

Generally, in 2D quantum critical phenomena, the cross-
over from the 2+1D quantum behaviors to the renormalized
2D classical ones occurs at finite temperatures. For the pre-
cise description of the quantum-classical crossover, a prom-
ising theoretical approach may be the nonperturbative renor-
malization group �RG� method. This technique has been
applied to classical frustrated magnets by Delamotte et al.
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yielding fruitful results.46 They showed that the nonperturba-
tive RG method successfully reproduces the RG equations
for both the 4D Ginzuburg-Landau-Wilson �GLW� model
and the 2D nonlinear sigma model, which are the effective
field theories for the 4D and 2D classical triangular HAF,
respectively, and is expected to capture correct low-energy
physics of the 3D triangular HAF. Thus, the nonperturbative
RG method may be suitable for the investigation of the di-
mensional �or quantum-to-classical� crossover phenomena
for these systems. We utilize this remarkable merit of the
approach to shed light on how quantum and thermal fluctua-
tions control low-energy properties in the vicinity of quan-
tum fluctuation-driven first order transitions.

Our main results are as follows. At finite temperatures, the
crossover from a quantum �6 model to a renormalized 2D
classical system appears, and as T decreases, long-
wavelength behaviors are almost governed by the �6 fluctua-
tions which eventually bring about the first order transition.
Also, it is found that in this crossover region, thermodynamic
properties are effectively determined by gapless excitations a
la spin waves with a linear dispersion. The presence of these
low-lying excitations explains partly the experimental obser-
vations for NiGa2S4; i.e., the quadratic T dependence of the
specific heat coefficient, and the finite T-independent uni-
form spin susceptibility at low temperatures.37

The organization of this paper is as follows. In Sec. II, the
effective field theory and the formulation of the nonpertur-
bative RG method are given. In Sec. III, we present results
on the RG flows obtained by solving numerically the RG
equations, which demonstrate the existence of strong fluctua-
tions driving the phase transition at T=0 to the first order
type. In Sec. IV, we show that in the crossover region, quasi-
Gaussian fluctuations dominate low-energy properties, and

derive low-T behaviors of the specific heat coefficient and
the uniform spin susceptibility. A summary of our results and
discussions on the implication for the recent experimental
observations for NiGa2S4 are given in Sec. V.

II. EFFECTIVE FIELD THEORY AND
NONPERTURBATIVE RENORMALIZATION GROUP

METHOD

A. Quantum O„3…ÃO„2… matrix Ginzburg-Landau-Wilson
model for frustrated magnets

Quantum phase transitions in two dimensions which oc-
cur at T=0 cannot be described by the usual �4-type
Ginzburg-Landau scheme, since the long-range ordered
phase exists only at T=0, and the order parameter becomes
nonzero abruptly just at T=0. In the case of 2D quantum
nonfrustrated HAF, the low-energy properties of the quantum
phase transition are successfully explained in terms of the
O�3� nonlinear sigma model.51 In the derivation of the non-
linear sigma model from the HAF, one merely postulates that
the correlation length is larger than the lattice constant. Thus
the model describes long-wavelength physics of both the or-
dered phase at T=0 and the disordered phase above the tran-
sition temperature, that are mainly governed by transverse
fluctuations a la spin waves. The nonlinear sigma model is
suitable for the description of the 2D quantum phase transi-
tion in which the order parameter amplitude is almost frozen,
but the strong transverse fluctuations destroy the LRO at
finite temperatures.

The extension of the nonlinear sigma model approach to
the 2D quantum triangular HAF was achieved by Dombre
and Read, and Azaria et al.38,54 The order parameter for this
case is expressed by a matrix with O�3��O�2� symmetry,

�= ��� 1 ,�� 2�, where �� i
t= ��1i ,�2i ,�3i� is an O�3� vector. The

O�3� symmetry reflects the spin rotational symmetry. The
O�2� symmetry comes from the E representation of the C3v
symmetry of the triangular lattice, which is enlarged to O�2�
in the continuum limit.46,55 These vectors obey the nonlinear
conditions, ��� i�2=1, �� 1 ·�� 2=0 corresponding to the 120°
structure ordered state.

Subsequently, however, it was recognized that the O�3�
�O�2� nonlinear sigma model in three dimensions is not a
proper low-energy theory for the classical stacked triangular
HAF, because the model neglects totally longitudinal �ampli-
tude� fluctuation modes, which importantly induce a
fluctuation-driven first order transition.43–46 This fact implies
that the 2D quantum version of the O�3��O�2� nonlinear
sigma model fails to capture the important low-energy phys-
ics at T=0. To improve the model, one needs to introduce an
effective potential which replaces the above nonlinear condi-
tion with the relaxed constraints. Then, the correct low-
energy effective theory for 2D quantum triangular HAF is
given by the O�3��O�2� matrix GLW model, of which the
action is given by

S = S� + S4 + S6, �1�

FIG. 1. Phase diagrams of quantum second order phase transi-
tion �top� and quantum first order transition �bottom�. The vertical
and horizontal axes are, respectively, temperature T and a parameter
1 /� which controls quantum fluctuations.
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S� = �
0

�

d�� d2x�Z�̃

2
tr��	�t�	�� +


̃�̃2

4
V�V�� , �2�

S4 = �
0

�

d�� d2x� �̃�̃2

4
� ̂

2
− 1	2

+
	̃�̃2

4
�̂� , �3�

S6 = �
0

�

d�� d2x� �̃6�̃3

3
� ̂

2
− 1	3

+ 	̃6�̃3� ̂

2
− 1	�̂� , �4�

with �=1/T the inverse temperature, and

Va = �ij��t�a��ij , �5�

̂ = tr��t��, �̂ =
1

2
tr��t� −

̂

2
	2

. �6�

Here, �	= � 1
c1

�� ,�x ,�y�, �a= � 1
c3

�� ,�x ,�y�. The model �1� de-
scribes two massless excitations with the velocity c1, and a
massless excitation with the velocity,

ct =
 Z + 
̃�̃

Z�c3/c1�2 + 
̃�̃
c3, �7�

as well as a massive excitation with the mass �̃�̃, and two
massive excitations with the mass 	̃�̃. The three massless
excitations are, respectively, two out-of-plane modes and one
in-plane mode of transverse fluctuations a la spin waves. The
second part S4 is an effective potential which imposes the

released nonlinear conditions on �� i. In the limit of �̃→�,
	̃→�, S4 recovers the strict nonlinear conditions, and S�

+S4 becomes equivalent to the action of the O�3��O�2�
nonlinear sigma model.11,38,54,55 The release of the constraint
allows the existence of the three massive longitudinal fluc-
tuation modes. The classical version of the model S�+S4 has
been extensively studied so far.42,44–46 Here, we also consider
the six-body part S6 which is required for the correct descrip-
tion of the fluctuation-driven first order transition. In the ex-
pression of S6, we neglect terms with derivatives, because
the scaling dimensions of these terms imply that they are
irrelevant. Although in the following our analysis is applied
to nonperturbative regions including the strong-coupling
limit, we believe that the omission of the six-body terms with
derivatives would not change the essential features of our
results. Then, since any polynomials of �i which preserve
the O�3��O�2� symmetry are expressed in terms of ̂ and
�̂,46 six-body terms are generally given by Eq. �4�. The ef-
fective field theory �1� captures low-energy physics of the
2D quantum triangular HAF in the vicinity of the long-range
ordered state with the 120° structure, which are governed by
both quantum and thermal fluctuations. The 120° structure
state is expressed by the configuration of � which minimizes
S, i.e., �S /��i=0. Transverse and longitudinal spin fluctua-
tions around this configuration which preserve relative
angles between spins on a primitive triangle are included in
the model �1�.

It is noted that although the condition �S /��i=0 leads the
finite amplitude of the order parameter, the model is also
applicable to the disordered phase at finite temperatures,

since in 2D systems transverse fluctuations for T�0 are so
strong that the average magnetization vanishes even under
this condition, in accordance with the Mermin-Wagner-
Coleman theorem.56 This is a key feature of the nonlinear
sigma model as an effective field theory for the 2D quantum
phase transition at T=0. We would like to stress again that
any perturbative approaches for the GLW model �1� cannot
describe the 2D quantum phase transition properly because
of the reason explained above, and a theoretical framework
which can interpolate the nonlinear sigma model and the
GLW model is required. The nonperturbative RG method is
most suitable for this purpose, as will be explained in the
following sections.

B. Nonperturbative renormalization group method for
quantum phase transitions

We apply the nonperturbative RG method to the model
�1�. This approach was developed by Wetterich, Zumbach,
and Delamotte et al. for classical matrix GLW models in
connection with frustrated magnets.41,42,46,57–59 A remarkable
merit of this method is that in contrast to perturbative RG
calculations, it is applicable to the whole range of the cou-
pling constants � and 	 including the strong-coupling limit,
� ,	→�. In fact, Delamotte et al. showed that the nonper-
turbative RG method successfully reproduces the RG equa-
tions for both the 4D GLW model in the weak-coupling limit
and the 2D nonlinear sigma model in the strong-coupling
limit.46 This feature is quite important in the investigation of
the quantum phase transition, since our systems may exhibit
the quantum-classical crossover at finite temperatures, which
is equivalent to the dimensional crossover from the 2D clas-
sical region to the 2+1�=3�D quantum-fluctuation-
dominated region. We exploit this fascinating advantage of
the nonperturbative RG method in the following.

It is straightforward to generalize the derivation of the RG
equations for the classical system to the 2D quantum
case.60–63 We assume that the effective action �k��� for any
values of a scaling parameter k has the same form as Eq. �1�
with the renormalized parameters; i.e., ����=S. This means
that the effective action is truncated up to the six-body term.
To argue quantum critical behaviors at finite temperatures,
we utilize a nonrelativistic renormalization scheme,51,52 in
which the infrared cutoff is introduced in the momentum
space as a scaling parameter k. The exact renormalization
group equation for the quantum effective action �k��� is
given by

�t�k��� =
1

2 
p,p�

�̃t ln��k
�2� +

T

�2��2Rk�q2���p + p��� , �8�

where t=−ln k, p= �i
n ,q��. 
n is the Matsubara frequency
2�nT, and q� is the 2D momentum. Rk�q2� is the infrared
cutoff function in the momentum space. �̃t acts only on
Rk�q2�. In the following, we use the theta cutoff function:

Rk�q2� = Z�k2 − q2���k2 − q2� . �9�

�k
�2� is the inverse one-particle Green function defined by
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��k
�2��p,p����� = � �2�k���

����p�����p��
�

min
. �10�

Here, the derivative is taken at the configuration which mini-
mizes �k���=S.

To investigate the renormalization group flow of the ef-
fective action �1�, we introduce dimensionless renormalized
couplings,46

� =
Zk1−d

c0
�̃, � =

c0�̃

Z2k3−d , 	 =
c0	̃

Z2k3−d , �11�


 =
c0
̃

Z2k1−d , �6 =
c0

2

Z3k2d−4�̃6, 	6 =
c0

2

Z3k2d−4	̃6. �12�

Here c0 is an initial value of c1. The nonperturbative RG
equations for these couplings and the velocities c1 and c3 are
given in the Appendix. In the next sections, we present the
results obtained from numerical solutions of the RG equa-
tions.

III. RENORMALIZATION GROUP FLOWS FOR
DIMENSIONLESS COUPLINGS AND THE PHASE

DIAGRAM

For the characterization of the quantum phase transition,
it is convenient to introduce a dimensionless renormalized
temperature T�=T / �c0k� with c0 an initial value of c1. At
finite temperatures, in the scaling limit k→0, the renormal-
ized Matsubara frequency 
n=2�nT� for n�0 becomes in-
finity, and thus does not contribute to low-energy properties.
Then, in this limit, the system is in the class of the 2D clas-
sical model, in which quantum effects are entirely included
in the renormalization of parameters. As will be seen below,
these renormalized 2D classical behaviors appear only in the
sufficiently long-wavelength scale k�kc, where the critical
value of the scaling parameter kc is proportional to T.

We solve the RG equations �A1�–�A9� numerically for
some particular sets of initial values of parameters by using a
Runge-Kutta-Verner method with high precision. We put k
=1 at the initial stage of the renormalization. Depending on
the initial values of the parameters, there are two regions in
the scaling limit at T=0 as indicated in Fig. 1; i.e., a long-
range ordered phase, and a quantum disordered phase �quan-
tum paramagnet�. The value of 1 /� at the phase boundary
depends on the choice of the initial values of the other pa-
rameters. The correspondence between the spin S triangular
HAF with the nearest-neighbor exchange interaction J and
the O�3��O�2� nonlinear sigma model implies that the ini-
tial values of parameters are set to54

c1 =
3
3

2
2
JSa, �̃ =


3

4
JS2, Z = 1,


̃ = 0,

̃

c3
2 = −

16

27
3J3S4a2
, �13�

where a is the lattice constant. These parameters are in the
region where the LRO exists at T=0, and thus we concen-

trate on this case in the following. As will be seen below, as
long as the initial values of parameters are in this region, the
qualitative and essential features of the RG flows are not
altered by changing the parameters from those given by �13�.

In Fig. 2, we show the RG flows obtained at T=0.001c0
for some initial values of parameters. Since the parameter �,
which is the overall coefficient of the action �1�, scales to
infinity as k→0, we plot the running coupling constants of
the four-body and six-body terms, ��2, 	�2, �6�3, and 	6�3,
divided by � to specify the low-energy behaviors. The nu-
merical solutions for the RG equations �A1�–�A9� show that
the nature of the phase transition and long-wavelength be-
haviors of the model �1� are different from those predicted
for the nonlinear sigma model.38 We do not find any non-
trivial fixed points which separate the long-range ordered
and disordered states, in agreement with the recent studies on
the 3D classical stacked triangular HAF.42–46 As the scaling
parameter k decreases, �� and 	� scale to large values, im-
plying that at finite temperatures the system is renormalized
toward the class of the renormalized 2D classical nonlinear
sigma model. However, it should be noted that in the inter-
mediate region, the six-body fluctuations characterized by
the parameters �6�2 and 	6�2 develop strongly, which may
eventually induce a fluctuation-driven first order transition at
T=0.

To see the crossover behavior toward the �6 model in the
intermediate scale more clearly, we depict the renormaliza-
tion of the effective potential S4+S6 for some values of the

FIG. 2. RG flows of dimensionless couplings. �a� Plots of �, ��,
and �6�2. �b� Plots of 	�, 
�, and 	6�2. Arrows indicate the di-
rections of the RG flows. The crossover to the �6 theory appears in
the intermediate regions.
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scaling parameter k at T=0.001c0 in Fig. 3. Here, for sim-
plicity, we plot the effective potential as a function of 
̂
under the condition �̂=0. In the early stage of the renormal-
ization �k=0.818 in Fig. 3�, the effective potential has two
minima at 
̂= ±
2, corresponding to the nonlinear condi-
tion which expresses the situation that longitudinal fluctua-
tions are suppressed, but strong tranverse fluctuations inhibit
the emergence of the LRO. As k decreases, a minimum at

̂=0 appears, and the depth of the valley at the origin be-
comes deeper and deeper, indicating that the fluctuations
which may drive the phase transition into the first order type
is developing. At k=0.006 73 in Fig. 3, however, the growth
of the minimum at the origin stops and turns to a decline for
k�0.006 73. Eventually, for sufficiently small k �k
=0.000 12 in Fig. 3�, the minimum at the origin disappears
and the potential valleys at finite 
̂ become deeper. It is
noted that at this final stage the effective potential does not
describe a �4 theory, but corresponds to the nonlinear con-
dition, showing that the system is scaled to the renormalized
2D classical nonlinear sigma model. Here we introduce the
scale kc which separates the region in which �6-type fluctua-
tions strongly develop �k�kc� and the renormalized 2D clas-
sical region �k�kc�. It is convenient to define kc as the value
of k for which the potential depth at the origin and that at a
finite value of 
̂ coincide. �In Fig. 3, kc=0.000 24.� At k
=kc, the paramagnetic state and the magnetically ordered
state are degenerate. If this situation is realized in the limit of
k→0, the first order transition to the ordered state occurs.
Indeed, this happens at T=0. In Fig. 4, we plot kc calculated
for several values of temperatures T. The results show that kc
is proportional to T, and the true phase transition which oc-
curs in the limit k→0 realizes only at T=0 as a first order
transition, which is consistent with the results derived for the
3D stacked classical model.43–46 kc�T is also the scale at
which the quantum-classical crossover occurs.52 Then, as the
temperature decreases toward T=0, the renormalized 2D
classical behaviors appear only for length scales much larger
than 1/kc, and the low-energy physics at finite temperatures

are mainly governed by the quantum fluctuations which in-
duce the first order transition. In Fig. 5, we show the sche-
matic phase diagram on the T−1/� plane suggested from
these RG flows for a particular set of the initial values of the
other parameters, �, 	, etc. The essential feature of the phase
diagram depicted in Fig. 5 does not depend on the choice of
these initial values. It is noted that in the long-range ordered
state at T=0, the effective potential has degenerate minima at
the origin and at the nonzero magnetization. This is the
unique feature of the quantum first order phase transition for
which the transition temperature is T=0. The shape of the
effective potential implies that there may be a possible coex-
istence of the ordered and disordered states. The fluctuations
which lead the crossover toward the �6 theory should sig-
nificantly affect the low-energy properties of the system. We
would like to address this issue in the next section.

IV. EMERGENT QUASI-GAUSSIAN
LOW-ENERGY BEHAVIORS

Since the zero-temperature phase transition in our system
is the first order type, universal critical behaviors do not

FIG. 3. Effective potentials S4+S6 as a function of 
̂ calculated
for a particular set of scaling parameters k under the condition �̂
=0.

FIG. 4. Plot of the critical scaling parameter kc versus tempera-
ture T.

FIG. 5. A schematic phase diagram. The inserted plots are the
renormalized potential versus the renormalized field 
̂.
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exist. However, it is still possible to relate low-energy prop-
erties of the model �1� which appeared in a certain parameter
region to experimentally observable quantities which are
governed by quantum and thermal fluctuations. For this pur-
pose, we investigate the RG flows of dimensionful couplings

�̃, �̃, 	̃, 
̃, �̃6, and 	̃6 for some particular sets of initial
values of the parameters, from which physical quantities can
be calculated. Surprisingly, as we will see below, long-
wavelength qualitative behaviors of these running couplings
seem to be almost universal to some extent at least in the
region where the long-range order realizes at T=0, and fur-
thermore, the effective action �k��� is renormalized to a sys-
tem in which Gaussian fluctuations dominate low-energy
properties.

In Figs. 6 and 7 we show the RG flows for the dimension-

ful couplings. It is noted that �̃, 	̃, �̃6, and 	̃6 scale to zero,
and �̃ and 
̃ scale to finite nonuniversal constants. Besides,
�̃��̃2
̃ for k→0, as long as the initial value of �̃2
̃ is much
smaller than that of �̃, which is a proper assumption for our
system since the 
̃ term �the second term of Eq. �2�� is gen-
erated in the process of the renormalization. We would like
to stress that these characteristic behaviors are rather univer-
sally found for any initial values of the parameters in the

region mentioned above. These observations imply that in
the scaling limit k→0, the effective action is renormalized to
a Gaussian-like model, which is given by the first term of Eq.
�2� without the nonlinear conditions:

SG =� d2x� d�
Z�̃

2 
i=1

2

�	�� i · �	�� i. �14�

In the region where the Gaussian-like fluctuation, i.e., the
free boson with a linear dispersion, dominates, the specific
heat coefficient is easily calculated as,

Cv = �3
3/����3��T/c1�2. �15�

The spin susceptibility is also obtained from the Gaussian
action. For this purpose, we introduce an external in-plane

magnetic field h� , which couples with the uniform component
of spin fluctuations in the form

−
Z�̃

c1
2 h� · ��� 1 � �t�� 1 + �� 2 � �t�� 2� . �16�

Then, in the quasi-Gaussian region, the spin susceptibility in
the limit T→0 is a nonzero constant given by �=−�2F /�h2

=k0 / �12�c1� with k0 an ultraviolet momentum cutoff. The

FIG. 6. RG flows of dimensionful couplings
for some particular sets of the initial values of

parameters. �a� Plots of �̃, �̃, and 	̃. �b� Plots of


̃, �̃6, and 	̃6. The initial values of parameters

are �̃�t=0�=0.3, �̃�0�=0.5, 	̃�0�=0.1, 
̃�0�
=−0.0001, 
̃�0� /c3

2�0�=−0.5, c1�0�=1.0 �solid

line�; �̃�0�=0.3, �̃�0�=0.3, 	̃�0�=0.22, 
̃�0�
=−0.0001, 
̃�0� /c3

2�0�=−0.5, c1�0�=1.0 �broken

line�; �̃�0�=0.3, �̃�0�=0.3, 	̃�0�=0.3, 
̃�0�
=−0.0001, 
̃�0� /c3

2�0�=−0.5, c1�0�=1.0 �thin

broken line�; �̃�0�=0.3, �̃�0�=0.3, 	̃�0�=0.4,

̃�0�=−0.0001, 
̃�0� /c3

2�0�=−0.5, c1�0�=1.0

�dotted line�; �̃�0�=0.3, �̃�0�=0.3, 	̃�0�=0.5,

̃�0�=−0.0001, 
̃�0� /c3

2�0�=−0.5, c1�0�=1.0
�dotted-and-broken line�, and the initial values of
both �6 and 	6 are equal to 0 in all calculations.
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quasi-Gaussian modes behave like spin waves with a linear
dispersion, despite the absence of spontaneous symmetry
breaking at finite temperatures. These results seem to explain
partly the recent experimental observations for the quasi-2D
triangular HAF NiGa2S4 at low temperatures. The spin-
liquid-like behaviors found in this material at finite tempera-
tures may be attributed to the existence of these fluctuation
modes.

V. SUMMARY AND DISCUSSION

We have investigated low-energy properties of the 2D
quantum triangular HAF using the nonperturbative RG
method and the mapping to the O�3��O�2� matrix GLW
model. Our findings are as follows.

�1� At finite temperatures, at the length scale shorter than
1/kc the �6 model which describes the fluctuations driving
the transition to the first order type dominates the low-
temperature behaviors, while at the scale larger than 1/kc the
renormalized 2D classical region appears. As the temperature
is lowered, the crossover scaling parameter kc decreases as
�T, and eventually at T=0, the first order phase transition to
the 120° structure occurs.

�2� In the crossover region at finite temperatures, the long-
wavelength properties are governed by quasi-Gaussian fluc-
tuations a la spin waves with a linear dispersion, which give
a quadratic T dependence of the specific heat coefficient and
a finite and T-independent nonzero value of the uniform spin
susceptibility at low temperatures.

Here we would like to discuss the relation between our
results and the recent experimental observations for the
quasi-2D quantum Heisenberg antiferromagnet on a triangu-
lar lattice, NiGa2S4, which show no sign of LRO down to
37 mK, implying the possible realization of a spin liquid.37

At low temperatures, the system exhibits some remarkable
properties; �i� The specific heat coefficient shows the qua-
dratic temperature dependence Cv�T2, indicating the exis-
tence of gapless excitation modes. �ii� The uniform spin sus-
ceptibility for T→0 is a nonzero constant, suggesting that
magnetic excitations are gapless. �iii� In contrast to the ob-
servations �i� and �ii�, the magnetic correlation length mea-
sured by the neutron scattering is rather short; i.e., �
�2.5 nm, leading the authors of Ref. 37 to the conclusion
that there may exist gapless nonmagnetic modes. Our results
for the specific heat coefficient and the spin susceptibility
obtained in Sec. IV seem to be in agreement with the obser-

FIG. 7. RG flows of dimensionful couplings.
The initial values of parameters are �̃�t=0�
=0.3, �̃�0�=3.0, 	̃�0�=3.0, 
̃�0�=−0.0001,

̃�0� /c3

2�0�=−0.5, c1�0�=1.0, �solid line�; �̃�0�
=0.3, �̃�0�=5.0, 	̃�0�=5.0, 
̃�0�=−0.0001,

̃�0� /c3

2�0�=−0.5, c1�0�=1.0 �broken line�; �̃�0�
=0.3, �̃�0�=8.0, 	̃�0�=8.0, 
̃�0�=−0.0001,

̃�0� /c3

2�0�=−0.5, c1�0�=1.0 �thin broken line�;
�̃�0�=0.3, �̃�0�=10.0, 	̃�0�=10.0, 
̃�0�=
−0.0001, 
̃�0� /c3

2�0�=−0.5, c1�0�=1.0 �dotted

line�; �̃�0�=0.3, �̃�0�=12.0, 	̃�0�=12.0, 
̃�0�=
−0.0001, 
̃�0� /c3

2�0�=−0.5, c1�0�=1.0 �dotted-
and-broken line�, and the initial values of both �6

and 	6 are equal to 0 in all calculations.
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vations �i� and �ii�, provided that the origin of the gapless
excitations may be attributed to magnetic ones, and that in
this system the coupling between the triangular layers is so
weak that thermal fluctuations suppress the true LRO at ex-
perimentally accessible low temperatures. However, the ob-
servation �iii� implies that the magnetic excitations may not
propagate coherently and have an excitation gap, and is not
consistent with our RG analysis which shows the existence
of an exponentially long correlation length. Then, how to
reconcile our results with the observation �iii�? To explain
this point, we would like to note that in our field-theoretical
model, chirality domains, which inevitably exist in real tri-
angular HAF and suppress the development of the magnetic
correlation length, are not included. Also, as was pointed out
by Kawamura and Miyashita,8 Z2 vortex, which is not taken
into account explicitly in the field-theoretical model, may
play a crucial role at finite temperatures, disturbing the
growth of �.64,65 It is expected that the velocities of the mag-
netic excitations, c1,3, are strongly renormalized by these to-
pological defects, and reduced to small values. Then, as long
as ��c /T, the magnetic excitations behave like gapless
modes, and our results may be applicable. Indeed, the experi-
mental observation �ii� intimates the existence of gapless
magnetic excitations. Also, to interpret the experimental ob-
servations �ii� and �iii� in a consistent way, one might need to
consider effects of randomness such as impurities, which are
beyond the scope of this paper, but may play a crucial role in
connection with the topological defects inherent in triangular
HAF. To confirm this speculation, we need further studies.
We would like to address this issue in the near future.
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APPENDIX A: RENORMALIZATION GROUP EQUATIONS
FOR THE QUANTUM O„3…ÃO„2… GINZBURG-

LANDAU-WILSON MODEL

In this appendix, we present the RG equations for the
dimensionless renormalized couplings �11� and �12� for the

effective action �1� as functions of the scaling parameter t
=−ln k. Here we consider the general case of the spatial di-
mension d. Differentiating Eq. �8� with respect to �i, as was
done in Ref. 46, we end up with the RG equations truncated
up to the six-body terms,

�t� = − �d − 1 + ��� −
3

2
l1���� − l1��	� −

r10

2
− �N − 2�l1�0�

−



�
r11 − 2

	

�
l1��	� −

4�

�
��6l1���� + 2	6l1��	�� ,

�A1�

�t� = �d − 3 + 2��� −
�2

4
�9l2���� + 2l2��	� + r20 + 2�N

− 2�l2�0�� − 2�	l2��	� − �
r21 − 
2r22 − 2	2l2��	�

+ 4�6l1���� + 68	6l1��	� − 4
�6

�
�
r11 + 2	l1��	��

− 16
�

�
��6

2l1���� + 2�6	6l1��	�� − 16�6
2�2l2����

− 32	6
2�2l2��	� − 12���6l2���� − 8���

+ 2	�	6l2��	� , �A2�

�t	 = �d − 3 + 2��	 − 3	�u11���,�	� − 	
r111��	�

−
	2

2
�3u11���,�	� + �N − 2�l2�0� − r110��	��

+ 4	6�l1���� + l1��	� −



�
r11 −

2	

�
l1��	��

−
16�

�
��6	6 + 2	6

2l1��	�� − 32�2	6
2u11���,�	�

− 8�	6�� + 2	�u11���,�	� , �A3�

� = −



2
l1�0� −

��2

2
l120���� + �
2�2h111�0� + h110�0�

+ �1 + �
�h222�0� + 2r111̃�0�� − �	2l120��	� , �A4�

�tc1 =
c1


4
�1 −

c1
2

c3
2�l1�0� +

c1��2

4
�− 3l220���� + 2l210���� + 4l300���� − 4l310����� +

c1�	2

4
�− 3l220��	� + 2l210��	�

+ 4l300��	� − 4l310��	�� +
c1�
2

4
�4

c1
2

c3
2r111�0� − r121�0� + 4r122̃�0� − 4r122�0� − 4r132�0� + 4w132�0� − 4h111�0� − 2h111�0�

− 2�1 + �
�h222�0� − 2r111̃�0�� , �A5�
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�t
 = �d − 1 + 2��
 +



2�
�l1���� − l1�0�� −

�2

2
�l120���� + 2�1 + �
�h220����� + 
2�2h111�0� + h110�0� + �1 + �
�h222�0�

+ r111̃�0� − 6h121���� − �1 + �
�h222���� − r111���� −
8

d
r111̃���� +

8

d + 2
h030�	�� +

8

d + 2
�N − 2�h030�0�� − 	2l120��	�

+ �
�6h120���� + �1 + �
�h221���� + r110����� , �A6�

�tc3 =
c3�2

4

�l120���� + 2�1 + �
�h220���� −

c3
2

c1
2 �− l120���� − 3l220���� + 2l210���� + 4l300���� − 4l310���� − 3w220����

− 10w130���� + 4�1 + ���w230���� + 12�1 + ���w140������ +
c3


2
�2h111�0� + h110�0� + �1 + �
�h222�0� + r111̃�0�

− 6h121���� − �1 + �
�h222���� − r111���� −
8

d
r111̃���� +

8

d + 2
h030�	�� +

8

d + 2
�N − 2�h030�0� −

1

2

c3
2

c1
2�4

c1
2

c3
2r111�0�

− r121�0� + 4r122̃�0� − 4r122�0� − 4r132�0� + 4w132�0� + 6r111���� + 8w121���� − 16r111���� − 16�1 + ���r121����

+ 16h031�	�� + 16�N − 2�h031�0��� +
c3	2

2

�− l120���� −

c3
2

c1
2 �− l120���� − 3l220���� + 2l210���� + 4l300���� − 4l310������

−
c3�

2
�− 6h120���� − �1 + �
�h221���� − r110���� −

c3
2

c1
2 �− 3r121���� + 4r121���� − 4w131���� + 4r131������ , �A7�

�t�6 = �2d − 4 + 3���6 + 16�2�6
3l3���� − 30��6

2l2���� − 12�	6�6l2��	� − 3	�6l2��	� −
3
�6

2
r21 + 32�2	6

3l3��	� +
	3

2�
l3��	�

− 48�	6
2l2��	� + 6	6	2l3��	� −

39	6

2�
l1��	� + 24�	6

2	l3��	� − 12	6	l2��	� +
�3

32�
�2�N − 2�l3�0� + 27l3����

+ 2l3��	� + r30� +
27�2�6

4
l3���� +

3	6�2

2
l3��	� +

3	�2

8�
l3��	� +

3
�2

16�
r31 + 18���6

2l3���� −
��6

4
�6�N − 2�l2�0�

+ 45l2���� + 6l2��	� + 3r20� + 12��	6
2l3��	� +

3�	2

4�
l3��	� − 6�	6l2��	� + 6�	6	l3��	� +

3�
2r32

8�
+


3r33

4�
, �A8�

�t	6 = �2d − 4 + 3��	6 +
�3

16
�3u21���,�	� + u21��	,���� +

1

8
�−

u11���,�	�
�

+
3l2����

2�
−

l2��	�
2�

+ 4�u21���,�	��6

+ 24�u21���,�	�	6 + 12�u21��	,���	6 + 6u21���,�	�	 + 3u21��	,���		�2 +
1

8
�96u21���,�	�	6

2�2

+ 96u21��	,���	6
2�2 + 64u21���,�	��6	6�2 + 16u21���,�	��6	� + 48u21���,�	�	6	� + 48u21��	,���	6	�

+ 6u21���,�	�	2 + 6u21��	,���	2 + l3�0�	2 + 4l2�����6 − 4l2�0�	6 − 30l2����	6 − 24l2��	�	6 − 8u11���,�	���6

+ 4	6� − 2	6r20 + 2
2r212��	� +
2u11���,�	�	

�
−

3l2����	
2�

−
l201��	�


2�
−

	r20

2�
+


r21

2�
	�

+
1

8
�256	6

2�u21���,�	��6 + u21��	,���	6��3 + 192u21��	,���	6
2	�2 + 128u21���,�	��6	6	�2

+ 16u21���,�	��6	2� + 48u21��	,���	6	2� − 16	6�4u11���,�	��6 + 5l2�����6 + 16u11���,�	�	6

+ 10l2��	�	6�� + 4u21��	,���	3 − 4l2�����6	 − 8l2�0�	6	 − 32l2��	�	6	 − 16u11���,�	���6 + 4	6�	

− 4l201��	�	6
 − 4	6
r21 + 4
3r213��	� −
u11���,�	�	2

�
+

2l2��	�	2

�
+

4l1��	��6

�
−

4l2�����6

�
−

44l1��	�	6

�

−
l201��	�	


�
−

	2r110��	�
�

+
2	
r111��	�

�
−

	
r21

�
−


2r112��	�
�

+

2r22

�
	 . �A9�

LOW-ENERGY PROPERTIES OF TWO-DIMENSIONAL¼ PHYSICAL REVIEW B 73, 184401 �2006�

184401-9



Here, �=−�t ln Z is the anomalous dimension, and the threshold functions appeared in the above expressions are

lmns�X� =
vd

d
T�

i

− 2m��i
2

c3
2 +

d

d + 2
	s

��i
2

c1
2 + 1 + X	m+1��i

2

c1
2 + 1	n , �A10�

rmn = vd�
0

1

dyyd−1T�
i

− 2m��i
2

c3
2 + y2	n

��i
2

c1
2 + 1 + 
���i

2

c3
2 + y2	�m+1 , �A11�

umn�X,Y� =
vd

d
T�

i

− 2��m + n���i
2

c1
2 + 1	 + mY + nX�

��i
2

c1
2 + 1 + X	m+1��i

2

c1
2 + 1 + Y	n+1 , �A12�

wmns�X� = vd�
0

1

dy yd−1T�
i

− 2��i
2

c3
2 + y2	s

��i
2

c1
2 + 1 + 
���i

2

c3
2 + y2	�m��i

2

c1
2 + 1 + X	n , �A13�

hmns�X� =
vd

d
T�

i

��i
2

c3
2 + y2	s

��i
2

c1
2 + 1 + 
���i

2

c3
2 + y2	�m��i

2

c1
2 + 1 + X	n , �A14�

rmns�X� = vd�
0

1

dy yd−1T�
i

− 2��m + n���i
2

c1
2 + 1	 + mX + n
���i

2

c3
2 + y2	�

��i
2

c1
2 + 1 + 
���i

2

c3
2 + y2	�m+1��i

2

c1
2 + 1 + X	n+1 �s, �A15�

with vd=d�d/2 / ��2��d��d /2+1��, �n=2�nT�, and �=�i
2 /c3

2+y2. rmns̃�X� is given by �A15� with � replaced by y2. rmns̃�X� is
given by �A15� with � replaced by �i

2 /c3
2. Also, lm�X�� lm00�X�. The renormalized temperature T� obeys the RG equation

�tT�=−T�. In the absence of the six-body terms, and in the limit T→0, the above RG equations agree with those obtained by
Delamotte et al. for the classical model truncated up to the fourth order terms.46 The RG equations are nonperturbative in the
sense that the beta functions �the right-hand sides of Eqs. �A1�–�A9�� do not explode even in the strong-coupling limit �
→�, 	→�. The one-loop results of the nonlinear sigma model are reproduced in this limit.
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