328 research outputs found

    Evolution of the electronic structure with size in II-VI semiconductor nanocrystals

    Get PDF
    In order to provide a quantitatively accurate description of the band gap variation with sizes in various II-VI semiconductor nanocrystals, we make use of the recently reported tight-binding parametrization of the corresponding bulk systems. Using the same tight-binding scheme and parameters, we calculate the electronic structure of II-VI nanocrystals in real space with sizes ranging between 5 and 80 {\AA} in diameter. A comparison with available experimental results from the literature shows an excellent agreement over the entire range of sizes.Comment: 17 pages, 4 figures, accepted in Phys. Rev.

    Effect of CD26/dipeptidyl peptidase IV on Jurkat sensitivity to G2/M arrest induced by topoisomerase II inhibitors

    Get PDF
    CD26/dipeptidyl peptidase IV (DPPIV) is a surface antigen with multiple functions, including a role in T-cell activation and the development of certain human cancers. We previously demonstrated that CD26/DPPIV enhanced sensitivity of Jurkat cells to doxorubicin. We now show that expression of CD26/DPPIV enhanced sensitivity of CD26 Jurkat transfectants to G2–M arrest mediated by the antineoplastic agent etoposide. The increased sensitivity to etoposide-induced G2–M arrest was associated with disruption of cell cycle-related events, including hyperphosphorylation of p34cdc2 kinase, change in cdc25C expression and phosphorylation, and alteration in cyclin B1 expression. CD26/DPPIV-associated enhancement of doxorubicin and etoposide-induced G2–M arrest was also observed in serum-free media, suggesting an effect of CD26 on cell-derived processes rather than serum-derived factors. Importantly, our work elucidated a potential mechanism for the enhanced susceptibility of CD26-expressing Jurkat cells to the topoisomerase II inhibitors by demonstrating that CD26/DPPIV surface expression was associated with increased topoisomerase II α levels and enhanced enzyme activity. Besides being the first to show a functional association between the multifaceted molecule CD26 and the key cellular protein topoisomerase II α, our studies provide additional evidence of a potential role for CD26 in the treatment of selected malignancies

    Capacitive energy storage from -50 to 100 °C using an ionic liquid electrolyte

    Get PDF
    Relying on redox reactions, most batteries are limited in their ability to operate at very low or very high temperatures. While performance of electrochemical capacitors is less dependent on the temperature, present-day devices still cannot cover the entire range needed for automotive and electronics applications under a variety of environmental conditions. We show that the right combination of the exohedral nanostructured carbon (nanotubes and onions) electrode and a eutectic mixture of ionic liquids can dramatically extend the temperature range of electrical energy storage, thus defying the conventional wisdom that ionic liquids can only be used as electrolytes above room temperature. We demonstrate electrical double layer capacitors able to operate from -50 to 100 °C over a wide voltage window (up to 3.7 V) and at very high charge/discharge rates of up to 20 V/s

    Body iron metabolism and pathophysiology of iron overload

    Get PDF
    Iron is an essential metal for the body, while excess iron accumulation causes organ dysfunction through the production of reactive oxygen species. There is a sophisticated balance of body iron metabolism of storage and transport, which is regulated by several factors including the newly identified peptide hepcidin. As there is no passive excretory mechanism of iron, iron is easily accumulated when exogenous iron is loaded by hereditary factors, repeated transfusions, and other diseased conditions. The free irons, non-transferrin-bound iron, and labile plasma iron in the circulation, and the labile iron pool within the cells, are responsible for iron toxicity. The characteristic features of advanced iron overload are failure of vital organs such as liver and heart in addition to endocrine dysfunctions. For the estimation of body iron, there are direct and indirect methods available. Serum ferritin is the most convenient and widely available modality, even though its specificity is sometimes problematic. Recently, new physical detection methods using magnetic resonance imaging and superconducting quantum interference devices have become available to estimate iron concentration in liver and myocardium. The widely used application of iron chelators with high compliance will resolve the problems of organ dysfunction by excess iron and improve patient outcomes
    corecore