20 research outputs found

    Cardiac effects of AII: AT1A Receptor Signaling, Desensitization, and Internalization

    No full text
    Angiotensin II receptors present in cardiomyocytes, nonmyocytes (predominantly fibroblasts), nerve terminals, and the heart vasculature mediate the multiple actions of angiotensin II (AII) in the heart, including modulation of normal and pathophysiological cardiac growth. Although the cellular processes that couple AII receptors (principally the AT1 subtype) to effector responses are not completely understood, recent studies have identified an array of signal transduction pathways activated by AII in cardiac cells. These include: the stimulation of phospholipase C which results in the activation of protein kinase C and the release of calcium from intracellular stores; an enhancement of phosphaditic acid formation; the coupling to soluble tyrosine kinase phosphorylation events; the initiation of the mitogen activated protein kinase (MAPK) cascade; and the induction of the STAT (Signal Transducers and Activators of Transcription) signaling pathway. It is tempting to speculate that these latter responses, which have been previously associated with growth factor signaling pathways, are involved in AII-induced cardiac growth. Interestingly, some of these novel pathways are apparently not under the same strict control imposed upon the more classical signaling pathways. Thus, while AII-induced calcium transients are rapidly (within minutes) desensitized following exposure to AII, the MAP kinase pathway is not, and activation of the STAT pathway requires hours of agonist exposure for maximal induction. These observations support an emerging picture in which the downstream signal transduction pathways of AII receptors are initiated and terminated with a distinct temporal arrangement. This organization allows appropriate rapid responses (e.g. vascular contraction) to transient AII exposure, some of which are rapidly terminated, perhaps for protective reasons, and others not. In contrast, additional responses (e.g. growth) probably require prolonged exposure to agonist

    Functional role for the angiotensin II receptor (AT1A) 3'-untranslated region in determining cellular responses to agonist: evidence for recognition by RNA binding proteins.

    No full text
    We demonstrate a functional role for the 3'-untranslated region (3'-UTR) of the angiotensin II (Ang II) receptor subtype AT1A mRNA in Chinese hamster ovary (CHO-K1) cells by stably transfecting the coding region of the receptor gene with or without the 845 bp 3'-UTR. Two cell lines expressing similar levels of cell-surface receptors (with 3'-UTR, Bmax=571 fmol/mg protein; without 3'-UTR, Bmax=663 fmol/mg protein) were used in the present study. Both cell lines expressed high-affinity receptors (with 3'-UTR, Kd=0.83 nM; without 3'-UTR, Kd=0.82 nM), and binding studies with 125I-labelled Ang II in the presence of GTP[S] demonstrated that both coupled to heterotrimeric G-proteins. Despite these similarities, significant differences were observed for receptor-mediated cell signalling pathways. In cells without the 3'-UTR, Ang II stimulated an increase in cAMP accumulation (11-fold above control) and in cells with the 3'-UTR no stimulation was observed, which was consistent with previous observations in most endogenous Ang II receptor (AT1)-expressing cells. Activation of cAMP by Ang II in cells without the 3'-UTR correlated with an inhibition of DNA synthesis, determined by [3H]thymidine incorporation. Ang II-mediated responses were blocked by EXP3174, a selective non-peptide receptor antagonist. We also observed differences in the transient profiles of intracellular calcium between cells with and without the 3'-UTR in response to Ang II. In cells with the 3'-UTR, a sustained level of intracellular calcium was observed after Ang II stimulation, whereas cells without the 3'-UTR displayed a full return to basal level within 50 s of Ang II treatment. Even though the expressed exogenous gene is under the control of a constitutively expressing promoter (cytomegalovirus promoter), Northern-blot analysis revealed a considerably greater accumulation of AT1A mRNA in cells without the 3'-UTR compared with cells with the 3'-UTR. Analysis of the decay rate of the AT1A mRNA in cells with and without the 3'-UTR revealed that the normally unstable AT1A receptor mRNA became highly stable by removing its 3'-UTR, identifying a role for the 3'-UTR in mRNA destabilization. Interestingly, both cells express similar levels of receptors at the cell surface, suggesting that the 3'-UTR is also involved in the efficient translation and/or translocation of the receptor protein to the plasma membrane. We hypothesized that these 3'-UTR-mediated functions of the receptor are regulated by RNA-binding proteins. To identify possible RNA-binding proteins for the AT1A 3'-UTR, cellular extracts were prepared from parental CHO-K1 cells and 3'-UTR-binding assays, electrophoretic mobility-shift assays and UV crosslinking studies were performed. A major cellular protein of 55 kDa was identified, which specifically interacted with the 3'-UTR. Our data suggest that the 3'-UTR of the AT1A can control specific receptor functions, perhaps via selective recognition of the 3'-UTR by RNA-binding proteins

    Use of alternative polyadenylation sites for tissue-specific transcription of two angiotensin-converting enzyme mRNAs.

    No full text
    The pulmonary isozyme of rabbit angiotensin-converting enzyme (ACE) is encoded by an mRNA of about 5 kb. cDNA clones corresponding to different parts of this mRNA have been isolated and the complete nucleotide sequences of both the coding and non-coding regions of the mRNA have been determined. The encoded protein has 1309 residues with a 33 amino acids-long signal peptide at the amino terminus and a potential membrane-anchoring domain near the carboxyl terminus. There is a strong sequence homology between two regions of the rabbit cDNA and between the rabbit, human, and mouse cDNAs. Comparison of the nucleotide sequences of the 3' untranslated regions of rabbit pulmonary and testicular ACE cDNAs revealed that the testicular cDNA is nested within the pulmonary cDNA at the 3' end. A rabbit genomic clone encompassing this region was isolated and partially sequenced. It was shown that the gene contains two potential polyadenylation sites 628 bp apart within one exon. Northern analyses with an appropriate oligonucleotide probe confirmed that the proximal polyadenylation site is used exclusively for terminating the testicular mRNA whereas the distal one is used exclusively for the pulmonary mRNA. These results demonstrated that the transcription of the two mRNAs encoding the two ACE isozymes not only initiates at two alternative tissue-specific sites which are 5.7 kb apart but the mRNAs also get polyadenylated at two alternative sites which are 628 bp apart

    Characterization of cDNAs encoding human pyruvate dehydrogenase alpha subunit.

    No full text

    Angiotensin type 1 receptor resistance to blockade in the opossum proximal tubule cell due to variations in the binding pocket

    No full text
    Blockade of the angiotensin (ANG) II receptor type 1 (AT(1)R) with angiotensin receptor blockers (ARBs) is widely used in the treatment of hypertension. However, ARBs are variably effective in reducing blood pressure, likely due, in part, to polymorphisms in the ARB binding pocket of the AT(1)R. Therefore, we need a better understanding of variations/polymorphisms that alter binding of ARBs in heterogeneous patient populations. The opossum proximal tubule cell (OKP) line is commonly used in research to evaluate renal sodium handling and therefore blood pressure. Investigating this issue, we found natural sequence variations in the opossum AT(1)R paralleling those observed in the human AT(1)R. Therefore, we posited that these sequence variations may explain ARB resistance. We demonstrate that OKP cells express AT(1)R mRNA, bind (125)I-labeled ANG II, and exhibit ANG II-induced phosphorylation of Jak2. However, Jak2 phosphorylation is not inhibited by five different ARBs commonly used to treat hypertension. Additionally, nonradioactive ANG II competes (125)I-ANG II efficiently, whereas a 10-fold molar excess of olmesartan and the ANG II receptor type 2 blocker PD-123319 is unable to block (125)I-ANG II binding. In contrast, ANG II binding to OKP cells stably expressing rat AT(1A)Rs, which have a conserved AT(1)R-binding pocket with human AT(1)R, is efficiently inhibited by olmesartan. A novel observation was that resistance to ARB binding to opossum AT(1)Rs correlates with variations from the human receptor at positions 108, 163, 192, and 198 within the ARB-binding pocket. These observations highlight the potential utility of evaluating AT(1)R polymorphisms within the ARB-binding pocket in various hypertensive populations
    corecore